header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1597 - 1603
1 Dec 2016
Meermans G Doorn JV Kats J

Aims

One goal of total hip arthroplasty is to restore normal hip anatomy. The aim of this study was to compare displacement of the centre of rotation (COR) using a standard reaming technique with a technique in which the acetabulum was reamed immediately peripherally and referenced off the rim.

Patients and Methods

In the first cohort the acetabulum was reamed to the floor followed by sequentially larger reamers. In the second cohort the acetabulum was only reamed peripherally, starting with a reamer the same size as the native femoral head. Anteroposterior pelvic radiographs were analysed for acetabular floor depth and vertical and horizontal position of the COR.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 603 - 610
1 May 2015
Meermans G Goetheer-Smits I Lim RF Van Doorn WJ Kats J

A high radiographic inclination angle (RI) contributes to accelerated wear and has been associated with dislocation after total hip arthroplasty (THA). With freehand positioning of the acetabular component there is a lack of accuracy, with a trend towards a high radiographic inclination angle. The aim of this study was to investigate whether the use of a digital protractor to measure the operative inclination angle (OI) could improve the positioning of the acetabular component in relation to a ‘safe zone’.

We measured the radiographic inclination angles of 200 consecutive uncemented primary THAs. In the first 100 the component was introduced freehand and in the second 100 a digital protractor was used to measure the operative inclination angle.

The mean difference between the operative and the radiographic inclination angles (∆RI–OI) in the second cohort was 12.3° (3.8° to 19.8°). There was a strong correlation between the circumference of the hip and ∆RI–OI. The number of RI outliers was significantly reduced in the protractor group (p = 0.002).

Adjusting the OI, using a digital protractor and taking into account the circumference of the patient’s hip, improves the RI significantly (p < 0.001) and does not require additional operating time.

Cite this article: Bone Joint J 2015; 97-B:603–610.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 312 - 318
1 Mar 2014
Meermans G Van Doorn WJ Koenraadt K Kats J

The orientation of the acetabular component can influence both the short- and long-term outcomes of total hip replacement (THR). We performed a prospective, randomised, controlled trial of two groups, comprising of 40 patients each, in order to compare freehand introduction of the component with introduction using the transverse acetabular ligament (TAL) as a reference for anteversion. Anteversion and inclination were measured on pelvic radiographs.

With respect to anteversion, in the freehand group 22.5% of the components were outside the safe zone versus 0% in the transverse acetabular ligament group (p = 0.002). The mean angle of anteversion in the freehand group was 21° (2° to 35°) which was significantly higher compared with 17° (2° to 25°) in the TAL group (p = 0.004). There was a significant difference comparing the variations of both groups (p = 0.008).

With respect to inclination, in the freehand group 37.5% of the components were outside the safe zone versus 20% in the TAL group (p = 0.14). There was no significant difference regarding the accuracy or variation of the angle of inclination when comparing the two groups.

The transverse acetabular ligament may be used to obtain the appropriate anteversion when introducing the acetabular component during THR, but not acetabular component inclination.

Cite this article: Bone Joint J 2014;96-B:312–18.