header advert
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 104 - 109
1 Mar 2024
Sugano N Maeda Y Fuji H Tamura K Nakamura N Takashima K Uemura K Hamada H

Aims

Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component.

Methods

We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims

This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry.

Methods

In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1656 - 1661
1 Nov 2021
Iwasa M Ando W Uemura K Hamada H Takao M Sugano N

Aims

Pelvic incidence (PI) is considered an important anatomical parameter for determining the sagittal balance of the spine. The contribution of an abnormal PI to hip osteoarthritis (OA) remains controversial. In this study, we aimed to investigate the relationship between PI and hip OA, and the difference in PI between hip OA without anatomical abnormalities (primary OA) and hip OA with developmental dysplasia of the hip (DDH-OA).

Methods

In this study, 100 patients each of primary OA, DDH-OA, and control subjects with no history of hip disease were included. CT images were used to measure PI, sagittal femoral head coverage, α angle, and acetabular anteversion. PI was also subdivided into three categories: high PI (larger than 64.0°), medium PI (42.0° to 64.0°), and low PI (less than 42.0°). The anterior centre edge angles, posterior centre edge angles, and total sagittal femoral head coverage were measured. The correlations between PI and sagittal femoral head coverage, α angle, and acetabular anteversion were examined.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 297 - 302
1 Mar 2019
Tamura K Takao M Hamada H Ando W Sakai T Sugano N

Aims

The aim of this study was to examine whether hips with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH) have significant asymmetry in femoral length, and to determine potential related factors.

Patients and Methods

We enrolled 90 patients (82 female, eight male) with DDH showing unilateral OA changes, and 43 healthy volunteers (26 female, 17 male) as controls. The mean age was 61.8 years (39 to 93) for the DDH groups, and 71.2 years (57 to 84) for the control group. Using a CT-based coordinate measurement system, we evaluated the following vertical distances: top of the greater trochanter to the knee centre (femoral length GT), most medial prominence of the lesser trochanter to the knee centre (femoral length LT), and top of the greater trochanter to the medial prominence of the lesser trochanter (intertrochanteric distance), along with assessments of femoral neck anteversion and neck shaft angle.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 439 - 445
1 Jul 2017
Sekimoto T Ishii M Emi M Kurogi S Funamoto T Yonezawa Y Tajima T Sakamoto T Hamada H Chosa E

Objectives

We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin (ASPN) gene; therefore, the present study aimed to investigate whether the CNV of ASPN is involved in the pathogenesis of AD.

Methods

Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s t-test).


Bone & Joint Research
Vol. 4, Issue 4 | Pages 50 - 55
1 Apr 2015
Sekimoto T Kurogi S Funamoto T Ota T Watanabe S Sakamoto T Hamada H Chosa E

Objectives

Excessive acetabular coverage is the most common cause of pincer-type femoroacetabular impingement. To date, an association between acetabular over-coverage and genetic variations has not been studied. In this study we investigated the association between single nucleotide polymorphisms (SNPs) of paralogous Homeobox (HOX)9 genes and acetabular coverage in Japanese individuals to identify a possible genetic variation associated with acetabular over-coverage.

Methods

We investigated 19 total SNPs in the four HOX9 paralogs, then focused in detail on seven of those located in the 3’ untranslated region of HOXB9 (rs8844, rs3826541, rs3826540, rs7405887, rs2303485, rs2303486, rs79931349) using a case-control association study. The seven HOXB9 SNPs were genotyped in 316 subjects who had all undergone radiological examination. The association study was performed by both single-locus and haplotype-based analyses.