header advert
Results 1 - 12 of 12
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1001 - 1004
1 Aug 2011
Fisher J

Bioengineering reasons for increased wear and failure of metal-on-metal (MoM) bearings in hip prostheses have been described. Low wear occurs in MoM hips when the centre of the femoral head is concentric with the centre of the acetabular component and the implants are correctly positioned. Translational or rotational malpositioning of the components can lead to the contact-patch of the femoral component being displaced to the rim of the acetabular component, resulting in a ten- to 100-fold increase in wear and metal ion levels. This may cause adverse tissue reactions, loosening of components and failure of the prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1134 - 1141
1 Sep 2009
Isaac GH Brockett C Breckon A van der Jagt D Williams S Hardaker C Fisher J Schepers A

This study reports on ceramic-on-metal (CoM) bearings in total hip replacement. Whole blood metal ion levels were measured. The median increase in chromium and cobalt at 12 months was 0.08 μg/1 and 0.22 μg/1, respectively, in CoM bearings. Comparable values for metal-on-metal (MoM) were 0.48 μg/1 and 0.32 μg/1. The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02). The cobalt levels were lower, but the difference was not significant. Examination of two explanted ceramic heads revealed areas of thin metal transfer. CoM bearings (one explanted head and acetabular component, one explanted head and new acetabular component, and three new heads and acetabular components) were tested in a hip joint simulator. The explanted head and acetabular component had higher bedding-in. However, after one million cycles all the wear rates were the same and an order of magnitude less than that reported for MoM bearings. There were four outliers in each clinical group, primarily related to component malposition.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated.

We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear.

In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA.

Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris.

Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 946 - 949
1 Sep 2002
Blunn G del Preva EMB Costa L Fisher J Freeman MAR


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated.

The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation.

Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 598 - 603
1 May 2001
Nevelos JE Prudhommeaux F Hamadouche M Doyle C Ingham E Meunier A Nevelos AB Sedel L Fisher J

We compared and quantified the modes of failure and patterns of wear of 11 Mittelmeier and 11 Ceraver-Ostal retrieved alumina-alumina hip prostheses with reference to the corresponding clinical and radiological histories.

Macroscopic wear was assessed using a three-dimensional co-ordinate measuring machine. Talysurf contacting profilometry was used to measure surface roughness on a microscopic scale and SEM to determine mechanisms of wear at the submicron level.

The components were classified into one of three categories of wear: low (no visible/measurable wear), stripe (elliptical wear stripe on the heads and larger worn areas on the cups) and severe (macroscopic wear, large volumes of material lost). Overall, the volumetric wear of the alumina-alumina prostheses was substantially less than the widely used metal and ceramic-on-polyethylene combinations. By identifying and eliminating the factors which accelerate wear, it is expected that the lifetime of these devices can be further increased.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 179 - 179
1 Jan 1999
FISHER J


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 894 - 899
1 Sep 1998
Minakawa H Stone MH Wroblewski BM Lancaster JG Ingham E Fisher J

We examined stainless-steel, cobalt-chrome, titanium and alumina and zirconia ceramic femoral heads retrieved at revision surgery. All the heads had articulated against ultra-high-molecular-weight-polyethylene (UHMWPE) acetabular cups. We studied the simulation of third-body damage and the wear of UHMWPE against the various materials used for the heads. The surfaces of the retrieved heads were analysed using a two-dimensional contacting profilometer. Third-body damage was characterised by the mean height of the scratches above the mean line (Rpm).

The alumina ceramic and zirconia ceramic retrieved heads were found to have significantly less damage. In laboratory studies the ceramics were also more resistant to simulated third-body damage than the metal alloys. We studied the wear of UHMWPE against the damaged counterfaces in simple configuration tests. The damaged ceramics produced less polyethylene wear than the damaged metal counterfaces. The wear factor of UHMWPE against the damaged materials was dependent on the amount of damage to the counterface (Rp). Our study has shown the benefit of using the harder and more damage-resistant ceramic materials for femoral heads.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 340 - 344
1 Mar 1998
Besong AA Tipper JL Ingham E Stone MH Wroblewski BM Fisher J

Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethylene. Using a tri-pin-on-disc tribometer we studied the effect of ageing for ten years after gamma irradiation in air on the volumetric wear, particle size distribution and the number of particles produced by UHMWPE when sliding against a stainless-steel counterface.

The aged and irradiated material produced six times more volumetric wear and 34 times more wear particles per unit load per unit sliding distance than non-sterilised UHMWPE. Our findings indicate that oxidative degradation of polyethylene after gamma irradiation in air with ageing produces more wear.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 190 - 191
1 Mar 1998
Fisher J


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 5 | Pages 852 - 852
1 Sep 1994
Fisher J