header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 5, Issue 1 | Pages 1 - 10
1 Jan 2016
Burghardt RD Manzotti A Bhave A Paley D Herzenberg JE

Objectives

The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method.

Methods

In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1241 - 1245
1 Sep 2012
Burghardt RD Paley D Specht SC Herzenberg JE

Internal lengthening devices in the femur lengthen along the anatomical axis, potentially creating lateral shift of the mechanical axis. We aimed to determine whether femoral lengthening along the anatomical axis has an inadvertent effect on lower limb alignment. Isolated femoral lengthening using the Intramedullary Skeletal Kinetic Distractor was performed in 27 femora in 24 patients (mean age 32 years (16 to 57)). Patients who underwent simultaneous realignment procedures or concurrent tibial lengthening, or who developed mal- or nonunion, were excluded. Pre-operative and six-month post-operative radiographs were used to measure lower limb alignment. The mean lengthening achieved was 4.4 cm (1.5 to 8.0). In 26 of 27 limbs, the mechanical axis shifted laterally by a mean of 1.0 mm/cm of lengthening (0 to 3.5). In one femur that was initially in varus, a 3 mm medial shift occurred during a lengthening of 2.2 cm.

In a normally aligned limb, intramedullary lengthening along the anatomical axis of the femur results in a lateral shift of the mechanical axis by approximately 1 mm for each 1 cm of lengthening.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 639 - 643
1 May 2011
Burghardt RD Herzenberg JE Specht SC Paley D

Between October 2001 and September 2009 we lengthened 242 lower-limb segments in 180 patients using the Intramedullary Skeletal Kinetic Distractor (ISKD). Mechanical failure was defined either as breakage of the ISKD or failure of the internal mechanism to activate. Retrieved nails which failed mechanically were examined by the manufacturer for defects. In all, 15 ISKDs in 12 patients (13 limbs) failed mechanically representing an overall failure rate of 6.2%, with fracture of the device occurring in ten of the 15 failures. Two nails in one patient failed to lengthen and had to be replaced. The manufacturer detected an error in the assembly of the nail, which prompted a wide recall. One nail jammed after being forcefully inserted, and two nails failed to lengthen fully. Lengthening was achieved in all 12 patients, although three required a second operation to exchange a defective nail for a new, functioning device.

The ISKD is a complex mechanical device which lengthens by the oscillation of two telescopic sections connected by a threaded rod. The junction between these sections is surrounded by a keyring collar. This keyring collar is the weakest part of the device.