header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 117 - 117
1 Mar 2021
van Vijven M Kimenai J van Groningen B van der Steen M Janssen R Ito K Foolen J
Full Access

After anterior cruciate ligament (ACL) rupture, reconstructive surgery with a hamstring tendon autograft is often performed. Despite overall good results, ACL re-rupture occurs in up to 10% of the patient population, increasing to 30% of the cases for patients aged under 20 years. This can be related to tissue remodelling in the first months to years after surgery, which compromises the graft's mechanical strength. Resident graft fibroblasts secrete matrix metalloproteinases (MMPs), which break down the collagen I extracellular matrix. After necrosis of these fibroblasts, myofibroblasts repopulate the graft, and deposit more collagen III rather than collagen I. Eventually, the cellular and matrix properties converge towards those of the native ACL, but full restoration of the ACL properties is not achieved. It is unknown how inter-patient differences in tissue remodelling capacity contribute to ACL graft rupture risk. This research measured patient-specific tissue remodelling-related properties of human hamstring tendon-derived cells in an in vitro micro-tissue platform, in order to identify potential biological predictors for graft rupture.

Human hamstring tendon-derived cells were obtained from remnant autograft tissue after ACL reconstructions. These cells were seeded in collagen I gels on a micro-tissue platform to assess inter-patient cellular differences in tissue remodelling capacity. Remodelling was induced by removing the outermost micro-posts, and micro-tissue compaction over time was assessed using transmitted light microscopy. Protein expression of tendon marker tenomodulin and myofibroblast marker α-smooth muscle actin (αSMA) were measured using Western blot. Expression and activity of remodelling marker MMP2 were determined using gelatin zymography.

Cells were obtained from 12 patients (aged 12–51 years). Patient-specific variations in micro-tissue compaction speed or magnitude were observed. Up to 50-fold differences in αSMA expression were found between patients, although these did not correlate with faster or stronger compaction. Surprisingly, tenomodulin was only detected in samples obtained from two patients. Total MMP2 expression varied between patients, but no large differences in active fractions were found. No correlation of patient age with any of the remodelling-related factors was detected.

Remodelling-related biological differences between patient tendon-derived cells could be assessed with the presented micro-tissue platform, and did not correlate with age. This demonstrates the need to compare this biological variation in vitro - especially cells with extreme properties - to clinical outcome. Sample size is currently increased, and patient outcome will be determined. Combined with results obtained from the in vitro platform, this could lead to a predictive tool to identify patients at risk for graft rupture.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 116 - 116
1 Mar 2021
van Groningen B van der Steen MC Janssen DM van Rhijn LW van der Linden T Janssen RPA
Full Access

The purpose of this investigation was to evaluate systematically the literature concerning biopsy, MRI signal to noise quotient (SNQ) and clinical outcomes in graft-maturity assessment after autograft anterior cruciate ligament reconstruction (ACLR) and their possible relationships. Methods: The systematic review was reported and conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. Studies through May 2019 evaluating methods of intra-articular ACL autograft maturity assessment were considered for inclusion. Eligible methods were histologic studies of biopsy specimens and conventional MRI studies reporting serial SNQ and/ or correlation with clinical parameters. Ten biopsy studies and 13 imaging studies, with a total of 706 patients, met the inclusion criteria. Biopsy studies show that graft remodeling undergoes an early healing phase, a phase of remodeling or proliferation and a ligamentization phase as an ongoing process even 1 year after surgery. Imaging studies showed an initial increase in SNQ, peaking at approximately 6 months, followed by a gradual decrease over time. There is no evident correlation between graft SNQ and knee stability outcome scores at the short- and long-term follow-up after ACLR. The remodeling of the graft is an ongoing process even 1 year after ACLR, based on human biopsy studies. MRI SNQ peaked at approximately 6 months, followed by a gradual decrease over time. Heterogeneity of the MRI methods and technical restrictions used in the current literature limit prediction of graft maturity and clinical and functional outcome measures by means of MRI graft SNQ after ACLR.