header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome

Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 85 - 85
2 Jan 2024
Zwingenberger S
Full Access

Spinal diseases such as unstable fractures, infections, primary or secondary tumors or deformities require surgical stabilization with implants. The long-term success of this treatment is only ensured by a solid bony fusion. The size of the bony defect, the often poor bone quality and metabolic diseases increase the risk of non-union and make the case a great burden for the patient and a challenge for the surgeon. The goal of spinal fusion can only be achieved if the implants used offer sufficient mechanical stability and the local biological regeneration potential is large enough to form sufficient bone. The lecture will present challenging clinical cases. In addition, implant materials and new surgical techniques are discussed. Local therapeutic effects are achieved through the release of osteopromotive or anti-resorbtive drugs, growth factors and antibiotics. By influencing biological pathways, basic orthopedic research has strong potential to further positively change future spinal surgery.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 112 - 112
2 Jan 2024
Vater C Tian X Findeisen L Raina D Kern H Bolte J Straßburger L Matuszewski L Modler N Gottwald R Winkler A Schaser K Disch A Zwingenberger S
Full Access

A novel EP4 selective agonist (KMN-159) was developed [1] and has been proven that it can act as an osteopromotive factor to repair critical-size femoral bone defects in rats at a dose-dependent manner [2]. Based on its osteopromotive properties, we hypothesized that KMN-159 could also aid in bone formation for spinal fusion. Therefore, the aim of this study was to investigate its spinal fusion effect in a dorsolateral spinal fusion model in rats. This study was performed on 192, 10-week-old male Wistar rats. The rats were randomized into 8 groups (n = 12 per group): 1) SHAM (negative control), 2) MCM (scaffold only), 3) MCM + 20 µg BMP-2 (positive control), 4-8) MCM + 0.2, 2, 20, 200 or 2000 µg KMN-159. A posterolateral intertransverse process spinal fusion at L4 to L5 was performed bilaterally by implanting group dependent scaffolds (see above) or left empty in the SHAM group (protocol no. 25-5131/474/38). Animals were euthanized after 3 weeks and 6 weeks for µCT and biomechanical testing analysis. The results showed that KMN-159 promoted new bone formation in a dose-dependent manner at 3 weeks and 6 weeks as verified by µCT. The biomechanical testing showed that the dose of 20, 200 and 2000 µg KMN-159 groups obtained comparable strength with BMP-2 group, which higher than SHAM, MCM and lower doses of 0.2 and 2 µg KMN-159 groups. In conclusion, KMN-159 could be a potential replacement of BMP-2 as a novel osteopromotive factor for spinal fusion.

Acknowledgements: We are grateful to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation.

Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation.

We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives

Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro.

Methods

Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.