header advert
Results 1 - 6 of 6
Results per page:
Full Access

Abstract

Approximately 20% of primary and revision Total Knee Arthroplasty (TKA) patients require multiple revisions, which are associated with poor survivorship, with worsening outcomes for subsequent revisions. For revision surgery, either endoprosthetic replacements or metaphyseal sleeves can be used for the repair, however, in cases of severe defects that are deemed “too severe” for reconstruction, endoprosthetic replacement of the affected area is recommended. However, endoprosthetic replacements have been associated with high complication rates (high incidence rates of prosthetic joint infection), while metaphyseal sleeves have a more acceptable complication profile and are therefore preferred. Despite this, no guidance exists as to the maximal limit of bone loss, which is acceptable for the use of metaphyseal sleeves to ensure sufficient axial and rotational stability. Therefore, this study assessed the effect of increasing bone loss on the primary stability of the metaphyseal sleeve in the proximal tibia to determine the maximal bone loss that retains axial and rotational stability comparable to a no defect control.

Methods

to determine the pattern of bone loss and the average defect size that corresponds to the clinically defined defect sizes of small, medium and large defects, a series of pre-operative x-rays of patients with who underwent revision TKA were retrospectively analysed. Ten tibiae sawbones were used for the experiment. To prepare the bones, the joint surface was resected the typical resection depth required during a primary TKA (10mm). Each tibia was secured distally in a metal pot with perpendicular screws to ensure rotational and axial fixation to the testing machine. Based on X-ray findings, a fine guide wire was placed 5mm below the cut joint surface in the most medial region of the plateau. Core drills (15mm, 25mm and 35mm) corresponding to small, medium and large defects were passed over the guide wire allowing to act at the centre point, before the bone defect was created. The test was carried out on a control specimen with no defect, and subsequently on a Sawbone with a small, medium or large defect. Sleeves were inserted using the published operative technique, by trained individual using standard instruments supplied by the manufacturers. Standard axial pull-out (0 – 10mm) force and torque (0 – 30°) tests were carried out, recording the force (N) vs. displacement (mm) curves.

Results

A circular defect pattern was identified across all defects, with the centre of the defect located 5mm below the medial tibial base plate, and as medial as possible. Unlike with large defects, small and medium sized defects reduced the pull-out force and torque at the bone-implant interface, however, these reductions were not statistically significant when compared to no bony defect.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 59 - 59
17 Nov 2023
Yang I Buchanan R Al-Namnam N Li X Lucas M Simpson AH
Full Access

Abstract

Background

Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples.

Methods

A setup based on the Robot Operating System (ROS) and AprilTag was designed to track and to record the real time position of the ultrasonic cutting tool in space. Synchronised load cell axial force readings of three separate orthopaedic surgeons during ultrasonic cutting were recorded. Each surgeon was asked to find a comfortable position that reflects as close as possible their clinical handling of a cutting instrument used in surgery, and to perform two cuts in each of three samples of human cortical bone. Bone samples were obtained following ethical approval from an institutional review board (ethics approval number: SR1342) and prior informed consent was obtained from all patients. Bone samples were extracted from the femoral neck region of three hip osteoarthritis patients. During cutting, surgeons were allowed a total cutting time of one minute and cutting was conducted using an ultrasonic tool with frequency of a 35kHz (35.7 µm peak to peak displacement amplitude) under constant irrigation using a MINIPULS® 3 Peristaltic pump (38 revolutions per minute) using Phosphate-Buffered Saline (PBS) at 25°C. From the recorded data, the average instantaneous cutting velocity was calculated and the maximum cutting force was identified.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 20 - 20
1 Dec 2021
Yang I Gammell JD Murray DW Mellon SJ
Full Access

Abstract

Background

The Oxford Domed Lateral (ODL) Unicompartmental Knee Replacement (UKR) has some advantages over other lateral UKRs, but the mobile bearing dislocation rate is high (1–6%). Medial dislocations, with the bearing lodged on the tibial component wall, are most common. Anterior/posterior dislocations are rare. For a dislocation to occur distraction of the joint is required. We have developed and validated a dislocation analysis tool based on a computer model of the ODL with a robotics path-planning algorithm to determine the Vertical Distraction required for a Dislocation (VDD), which is inversely related to the risk of dislocation.

Objectives

To modify the ODL design so the risk of medial dislocation decreases to that of an anterior/posterior dislocation.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1033 - 1040
1 Aug 2020
Kennedy JA Mohammad HR Yang I Mellon SJ Dodd CAF Pandit HG Murray DW

Aims

To report mid- to long-term results of Oxford mobile bearing domed lateral unicompartmental knee arthroplasty (UKA), and determine the effect of potential contraindications on outcome.

Methods

A total of 325 consecutive domed lateral UKAs undertaken for the recommended indications were included, and their functional and survival outcomes were assessed. The effects of age, weight, activity, and the presence of full-thickness erosions of cartilage in the patellofemoral joint on outcome were evaluated.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 79 - 79
1 Apr 2018
Lee W Han C Yang I Park K
Full Access

Introduction

Reinforcement ring with allograft bone is commonly used for acetabular reconstruction of bone defects because it can achieve stable initial fixation of the prosthesis. It is not clear whether the allograft bone can function as a viable host bone and provide long-standing structural support. The purpose of this study was to assess to long-term survival of the reinforcement rings and allograft bone incorporation after acetabular revisions.

Methods

We retrospectively reviewed 39 hips (37 patients) who underwent reconstruction of the acetabulum with a Ganz reinforcement ring and allograft bone in revision total hip arthroplasty. There were 18 females and 19 males with a mean age of 55.9 years (35–74 years). The minimum postoperative follow-up period was 10 years (10∼17 years). We assessed the acetabular bone defect using the Paprosky's classification. We determined the rates of loosening of the acetabular reconstructions, time to aseptic loosening, integration of the allograft bone, resorption of the allograft bone, and survival rate. Aseptic loosening of the acetabular component was defined as a change in the cup migration of more than 5 mm or a change in the inclination angle of more than 5° or breakage of the acetabular component at the time of the follow-up. Graft integration was defined as trabecular remodelling crossing the graft-host interface. Resorption of the allograft bone was classified as minor (<1/3), moderate (1/3–1/2) or severe (>1/2). Kaplan-Meier survivorship analysis was performed for aseptic loosening of the acetabular component.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 128 - 128
1 Jun 2012
Hwang B Lee W Park K Yang I Han C
Full Access

Purpose

The purpose of this study was to evaluate the complications related to the prosthesis design in patients managed with cemented total knee arthroplasty (TKA) with the anterior-posterior glide (APG) mobile bearing prosthesis.

Materials and Methods

One hundred eighty three total knee arthroplasties were performed using APG Low Contact Stress mobile bearing prosthesis (Depuy, Warsaw, IN) on 146 patients with an average of 8.4 years follow-up (range, 7 to 10 years). Patients were evaluated clinically and radiologically according to the American Knee Society clinical scoring system. The anteroposterior translation, anterior soft tissue impingements, and complications were assessed at the follow-up periods.