header advert
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 29 - 29
2 Jan 2024
Klatte-Schulz F Gehlen T Bormann N Tsitsilonis S Manegold S Schmock A Melzer J Schmidt-Bleek K Geißler S Duda G Sawitzki B Wildemann B
Full Access

Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR), MMP secretion (ELISA), migration rate (scratch wound healing assay) or contractility (collagen gels). Analysis revealed that elevated CD4+ T-cell levels and reduced CD8+ T-cell levels (increased CD4/CD8 ratio) in hematoma aspirate and pre-operative blood were associated with inferior clinical outcomes regarding pain and function at 26 and 52 weeks. Increased levels of CD8+ -memory T-cell subpopulations in blood 6 weeks after surgery were associated with less tendon elongation. In vitro, tenocytes showed increased MMP1/2/3 levels and collagen III/I ratio in co-culture with unpolarized and/or IL17-polarized CD4+ T-cells compared to unpolarized CD8+ T-cells. This coincided with increased IL17 receptor expression in tenocytes co-cultured with CD4+ T-cells. Exposure of tenocytes to IL17-polarized CD4+ T-cells decreased their migration rate and increased their matrix contractility, especially compared to IFNy-polarized CD8+ T-cells. The CD4+ /CD8+ T-cell ratio could serve as prognostic marker for early identification of patients with impaired AT healing potential. Local reduction of CD4+ T-cell levels or their IL17 secretion represent a potential therapeutic approach to improve AT healing and to prevent weakening of the tendon ECM.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 17 - 17
2 Jan 2024
Wildemann B
Full Access

The Global Burden of Disease Study 2019 showed a 33.4% increase in fractures and a 65.3% increase in Years lived with disability (YLD) since 1990. Although the overall rate of fracture related infection (FRI) is low, it increases to 30% in complex fractures. In addition, the implantation of foreign materials, such as fracture stabilizing implants, decreases the number of bacteria needed to cause an infection. Then, when infections do occur, they are difficult to treat and often require multiple surgeries to heal. The bacteria can persist in the canaliculi of the bony tissue, in cells, in a biofilm on material or necrotic bone or in abscess communities. In the last decades, different approaches have been pursued to modify biomaterials as well as implant surface and to develop antimicrobial surfaces or local drug release strategies. This talk will give an introduction to the problem of bony and implant associated infections and presents the development and preclinical (as well as clinical) studies of two approaches for local drug delivery.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective

The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known.

Materials and Methods

Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective

Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified.

Materials and Methods

Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 307 - 309
3 May 2021
Eitner A Wildemann B


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 83 - 83
1 Mar 2021
Klatte-Schulz F Minkwitz S Schmock A Bormann N Kurtoglu A Tsitsilonis S Manegold S Wildemann B
Full Access

Tendon healing is a complex process that often results in compromised healing of the tendon tissue. It has recently been shown that temporal changes in the expression profile and the histological tissue quality of the tendons occur during the early healing process after acute Achilles tendon rupture. Whether these changes are accompanied by an altered healing process, is not yet known and was the aim of the present study.

Tendon biopsies were obtained from 24 patients with acute Achilles tendon rupture at the time of surgery (2–9 days after rupture) and examined histologically as well as on RNA level. Histologically, the tendon architecture, the amount of aligned collagen, glycosaminoglycan and fat as well as the cellularity, vascularity and immune cell infiltration were determined. On RNA level the expression of markers for the modeling/remodeling (MMPs and TIMPs), collagens (1, 3, 5), tendon markers (scleraxis, tenomodulin), pro- and anti-inflammatory markers (IL-1beta, IL6, IL10, IL33, TNFa, TGF-beta1, COX2) and immune cell markers (CD3, CD68, CD80, CD206) were analyzed by Real-Time PCR. To determine the clinical outcome, the patients were followed up 12 months after the operation and the following scores were recorded: Subjective score, Tegner score, Visual Analog Scale (VAS) pain, VAS function, Matles Test, Achilles tendon total rupture score (ATRS), Therman 100-points score, Heel rise test. Statistics: Spearman correlation analysis.

Correlation analysis shows that early post-rupture surgery is associated with better clinical outcome (ATRS Score: p=0.022). Histologically, a good functional healing outcome shows a positive correlation to the amount of aligned collagen (Heel Rise Test: p = 0.009) and glycosaminoglycans in the tendon (Heel Rise Test: p = 0.026, Matles difference: p = 0.029), as well as a negative correlation to the fat content (Thermann score: p = 0.018, subjective score: p = 0.027, VAS function: p = 0.031). On RNA level, a good healing outcome correlates with increased expression of MMP13, collagen 1, 3, 5 (Heel Rise Test: p = 0.019, p = 0.048, p = 0.030), and TIMP2 (Tegner Score: p = 0.040), TGF-beta1 (Thermann Score: p = 0.032) and CD80 (ATRS: p = 0.025, Thermann score:, p = 0.032). Whereas a limited healing outcome is associated with an increased expression of MMP2 (Heel Rise Test: p = 0.033), MMP3 (Matles Test: p=0.001, Heal Rise test p = 0.017), and IL33 (Tegner Score: p = 0.047).

The results of the study show a clear relationship between the tendon biology at the time of the surgery and the clinical and functional healing outcome 12 months after the operation. Especially matrix formation and remodeling play a crucial role, while the examined immunological factors seem to influence the tendon healing to a lesser extent. The modulation of matrix formation could potentially lead to improved treatment options in the future.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 106 - 106
1 Nov 2018
Wildemann B
Full Access

Tendon pathologies represent an unresolved clinical challenge where the patients suffer from pain and impaired mobility. One of the most frequently ruptured tendons is the Achilles tendon and primarily seen in recreational and professional athletes. A study from Sweden reported a significant increase in the incidence of Achilles tendon ruptures of 17% in men and 22% in women due to the demographic changes and the higher sportive activity of older adults (Huttunen TT Am J Sports Med 2014). The re-rupture rate is between 2–10%, and the patients suffer from an impairment over a long time accompanied with incapability to work. The healing process results in the formation of a mechanically insufficient scar tissue. A detailed knowledge on the cellular and molecular processes underlying human Achilles tendon healing is necessary to develop new treatment strategies and judge therapeutic success. The analysis of human Achilles tendon samples at different time points post rupture and the comparison to intact and degenerated tendon tissue provides important information on the healing process.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 71 - 71
1 Apr 2018
Wildemann B
Full Access

As we grow older, the risk of tendon degeneration and injuries increases, which can result in pain, disability, healthcare cost, and lost productivity. Even after surgical repair the results are often unsatisfactory. The cellular reasons for the differences in the healing potential, however, are not well studied. To get a deeper insight into the biological characteristics of tenocyte-like cells from different patient groups we established a biobank with material from over 150 human donors. The patients/donors suffered from rotator cuff tears and were operated to restore the function. A proportion of the isolated cells showed stem cell-like characteristics and was able to differentiate into the osteoblastic, chondrogenic and adipogenic linage. Investigating the differentiation potential of the cells with regard to donor characteristics, we were able to demonstrate that age, sex but also the “degeneration” has an impact of the cellular potential. A possibility to stimulate the cellular activity is the application of growth factors, as already clinically used for stimulation of bone healing. Therefore, the responsiveness of the cells to the growth factors Bone Morphogenetic protein-2/7 (BMP-2/7) was analysed in vitro. Independent of the donor characteristics, the cells responded to the BMP-stimulation by increased proliferation and collagen-1 synthesis. However, cells isolated from donors with high fatty infiltration of the muscle or older females were less responsive. Looking into the intracellular signalling pathway, the data showed that the BMP-signal is mainly mediated by the canonical-pathway with samd8 playing a major role. This basic research gives first information regarding the differences in tenocytes biology with respect to the donor and is important for the understanding of tendon regeneration and the future development of new treatment strategies.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 41 - 41
1 Jan 2017
Minkwitz S Klatte-Schulz F Schmock A Stolk M Seifert M Scheibel M Wildemann B
Full Access

Tendon injuries are associated with the formation of inferior, disorganized scar tissue at the tendon bone insertion site and high failure rates. Two major processes are discussed being key players: the inflammatory reaction upon tear and the remodeling process of the tendon. In a previous study we demonstrated that the profile of MMPs and TIMPs, being key factors of tendon modeling and remodeling, is altered in tenocytes of rotator cuff tears from donors with higher age (>65 years) and degenerative status (high degree of muscle fatty infiltration)[1]. But do these cells also show different expression of inflammatory cytokines or react different upon cytokine stimulation? The aim of our project was to analyze the expression of inflammatory cytokines in human tenocyte-like cells (hTLCs) on mRNA-level and the responsiveness to cytokine stimulation regarding differences between varying donor characteristics such as age, sex and the degenerative status of the tendon.

TLCs were isolated from SSP tendon biopsies from 16 male and 14 female donors undergoing arthroscopic or open shoulder surgery. Cells from each donor (passage 1 or 2) were seeded in a 6-well plate and RNA was isolated after 7 days of culture. Quantitative Real-Time PCR was performed to analyze the expression of IL-6, IL-1β, TNF-α, IL-10, IL-33, TGF-β1 and COX-2. Furthermore, hTLCs of 12 male donors were stimulated for 3 days with a combination of TNF-α and IFN-γ (10ng/ml). The effect of the cytokines was analyzed by flow cytometry regarding surface marker expression: ICAM (CD54), VCAM (CD106), and Major Histocompatibility Complex (MHC)-class I and MHC-class II. Statistics: Mann-Whitney-U-Test, Spearman´s-Rho-correlation, p≤0.05.

Gene expression analysis revealed high levels of IL-6, TGF-β1 and COX-2 in hTLCs but low expression of TNF-α and IL-10. No differences in the expression of the inflammatory cytokines were found between low and high fatty infiltration or with respect to age. The stimulation of the hTLCs with TNF-α and IFN-γ increased the number of ICAM and VCAM positive cells up to 100% and 97±5%, respectively. MHC-class II was not expressed on unstimulated cells but 77±17% MHC-class II positive cells were present after stimulation. All unstimulated cells were positive for MHC-class I, but the MFI (Mean Fluorescent Intensity) increased after stimulation. No significant difference in the expression of surface markers was detected when comparing tenocytes of donors with low and high muscle fatty infiltration.

In contrast to the significant changes in expression levels of MMPs and TIMPs in tenocytes of donors with different age and degenerative status[1], we could not detect any significant changes in the expression of inflammatory cytokines or in the responsiveness of these tenocytes upon cytokine stimulation. All tenocytes showed the potential to respond to inflammatory processes. This indicates that the response of the tenocytes to inflammatory stimuli seems to be independent of donor characteristics, whereas the tendon remodeling might depend on age and degenerative status of the donor.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 88 - 88
1 Jan 2017
Minkwtz S Ott C Gruenhagen J Fassbender M Wildemann B
Full Access

It is supposed that disturbed vascularization is a major cause for the development of an atrophic non-union. However, an actual study revealed normal vessel formation in human non-union tissues [1]. An animal study using an atrophic non-union model should clarify the influence of the inhibition of angiogenesis by the inhibitor Fumagillin on bone healing and the underlying processes including inflammation, chondrogenesis, angiogenesis and osteogenesis.

For each group and time point (3, 7, 14, 21 and 42 days) 5–6 adult female Sprague Dawley rats were analyzed. The tibia was osteotomized and stabilized intramedullary with a k-wire coated with the drug carrier PDLLA (control group) or PDLLA +10% Fumagillin (atrophy group). Microarrays: Total-RNA were pooled per group, labeled with the Agilent single-color Quick-Amp Labeling Kit Cy3 and hybridized on Agilent SurePrint G3 Rat Gene Expression microarrays. After feature extraction and quantile normalization, relevant biological processes were identified using GeneOntology. Genes with an expression value below the 25. percentile were excluded. Heatmaps were used for visualization.

The analysis of inflammatory genes revealed an upregulation of monocyte/macrophage- relevant factors such as the chemokines Ccl2 and Ccl12 and the surface marker CD14. Other factors involved in the early inflammation process such as Il1a, Tnf and Il6 were not affected. Chondrogenic markers including Collagen Type II, -IX, -X, Mmp9, Mmp13, Hapln1, Ucma, Runx2, Sox5 and -9 were downregulated in this group. Furthermore, osteogenic factors were less regulated within the middle stage of healing (day 14–21). This gene panel included Bmps, Bmp antagonists, Bmp- and Tgfb receptors, integrines and matrix proteins. qPCR analysis of angiogenic genes showed an upregulation of Angpt2, Fgf1 and -2, but not for Vegfa over the later healing time points.

We demonstrated in a previous study that inhibiting angiogenesis in an osteotomy model led to a reduction in vessel formation and to the development of an atrophic non-union phenotype [2]. The microarray analysis indicated no prolonged inflammatory reaction in the atrophy group. But the upregulation of chemokines together with a delay in hematoma degradation signs to a mismatch between recruitment and demand of macrophages from the vessel system. Furthermore, chondrogenesis was completely blocked, which was shown by a downregulation of chondrogenic but also osteogenic markers being involved in chondrogenic processes. A reduced recruitment of MSCs might be a possible explanation. Although, microarray data revealed only minor expression changes regarding angiogenic genes, validation by q-PCR showed an upregulation of Angpt2, Fgf1 and -2 over the later healing time points. Due to the heterogeneity of the callus tissue it might be that variations of gene expression of a single tissue type will be masked by the expression levels of other tissue types. This issue is even more pronounced when analyzing different time points and by pooling the samples.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 25 - 25
1 Oct 2015
Pauly S Klatte-Schulz F Stahnke K Scheibel M Wildemann B
Full Access

Introduction

Platelet Rich Plasma (PRP) is widely used in clinical praxis. Especially the effects in musculoskeletal repair studies are diverse and an augmentation of healing processes stays questionable. However, diverse cell culture studies reported promising results, which seem not be transferable into the clinical situation. We therefore performed a cell culture study which better reflects the clinical situation: the autologous stimulation of human tendon cells with PRP.

Materials and Methods

Human tenocyte-like cells (hTLCs) from 24 donors (12 male/female) with supraspinatus tendon tears were isolated and characterized. The donors were grouped into 4 groups according to their age (</> 65 years) and sex. During follow up, approximately 2.5 years after initial surgery, the patients donated blood for PRP preparation (Ethic vote and written informed consent). Growth factors and platelets were quantified and the effect of autologous stimulation of the hTLCs was measured by analysis of cell proliferation, Collagen I synthesis and expression of Collagen I, III and Osteocalcin.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 77 - 78
1 Mar 2010
Wildemann B Burkhardt N Pruss A Haas N Schmidmaier G
Full Access

Introduction: Different grafting materials for the filling of large bony defects are used in clinic. Aim of the present study was the comparative analyses of different bony grafting materials concerning their growth factor composition and osteoinductivity in vitro.

Materials & Methods: Different allograft preparations from the tissue bank of the Charité and two commercial demineralized bone matrices (DBM; DBX putty and Allomatrix) were analyzed. Using ELISA-kits following growth factors were quantified: VEGF, IGF-I, FGFa/b, TGF-β1, BMP-2/4, PDGF. Osteoinductivity was investigated by the induction of alkaline phosphatase activity in C2C12-cells.

Results: BMP-2 had the highest quantity within the different materials without differences between the materials. Differences in the quantity of the other growth factors were found between the investigated materials but also a high variability between the different batches was observable. The investigated materials showed individual differences which are donor related concerning their osteoinductive potential. A significant enhancement of osteogenic differentiation (AP) was seen for the two commercial DBM-products. For PES processed spongiosa from the tissue bank, 2 of the 5 materials had a negative effect on the AP-activity in the first incubation period but no effect in the second incubation period.

Discussion: The results of the present study revealed, that the different investigated grafting materials contain growth factors important for bone regeneration and an osteoinductive potential of the DBMs. A high batch/donor related variability, however, was detectable in both analysis. Important for the use in vivo is beside the osteoinductivity also the osteoconductivity and further comparative studies are necessary.