header advert
Results 1 - 17 of 17
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 110 - 110
2 Jan 2024
Kucko N Crowley J Wills D Wang T Pelletier M Yuan H Houtzager G Campion C Walsh W de Bruijn J Groot FB
Full Access

Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system.

This study aimed to evaluate and compare the in vivo performance of three commercially-available synthetic bone grafts, (1) i-FACTOR Putty®, (2) OssDsign® Catalyst Putty and (3) FIBERGRAFT® BG Matrix, with that of a novel synthetic bone graft in a clinically-relevant instrumented sheep posterolateral lumbar spine fusion (PLF) model. The novel synthetic bone graft comprised of BCP granules with a needle-shaped submicron surface topography (MagnetOs) embedded in a highly porous and fibrillar collagen matrix (MagnetOs Flex Matrix).

Four synthetic bone grafts were implanted as standalone in an instrumented sheep PLF model for 12 weeks (n=3 bilateral levels per group; levels L2/3 & L4/5), after which spinal fusion was determined by manual palpation, radiograph and µCT imaging (based on the Lenke scale), range-of-motion mechanical testing, and histological and histomorphological evaluation.

Radiographic fusion assessment determined bilateral robust bone bridging (Lenke scale A) in 3/3 levels for MagnetOs Flex Matrix compared to 1/3 for all other groups. For µCT, bilateral fusion (Lenke scale A) was found in 2/3 levels for MagnetOs Flex Matrix, compared to 0/3 for i-FACTOR Putty®, 1/3 for OssDsign® Catalyst Putty and 0/3 for FIBERGRAFT® BG Matrix. Fusion assessment for MagnetOs Flex Matrix was further substantiated by histology which revealed significant graft resorption complemented by abundant bone tissue and continuous bony bridging between vertebral transverse processes resulting in bilateral spinal fusion in 3/3 implants.

These results show that MagnetOs Flex Matrix achieved better fusion rates compared to three commercially-available synthetic bone grafts when used as a standalone in a clinically-relevant instrumented sheep PLF model.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 137 - 137
4 Apr 2023
Chen P Chen Z Landao E Leys T Wang T Zheng Q Ding Y Zheng M
Full Access

To address the current challenge of anterior cruciate ligament (ACL) reconstruction, this study is the first to fabricate a braided collagen rope (BCR) which mimics native hamstring for ACL reconstruction. The study aims to evaluate the biological and biomechanical properties of BCR both in vivo and vitro.

Rabbit ACL reconstruction model using collagen rope and autograft (hamstring tendon) was conducted. The histological and biomechanical evaluations were conducted at 6-, 12-, 18, 26-week post-operation. In vitro study included cell morphology analysis, cell function evaluation and RNA sequencing of the tenocytes cultured on BCR. A cadaver study was also conducted to verify the feasibility of BCR for ACL reconstruction.

BCR displays satisfactory mechanical strength similar to hamstring graft for ACL reconstruction in rabbit. Histological assessment showed BCR restore ACL morphology at 26 weeks similar to native ACL. The superior dynamic ligamentization in BCR over autograft group was evidenced by assessment of cell and collagen morphology and orientation. The in vitro study showed that the natural collagen fibres within BCR enables to signal the morphology adaptation and orientation of human tenocytes in bioreactor. BCR enables to enhance cell proliferation and tenogenic expression of tenocytes as compared to hydrolysed collagen. We performed an RNA-Sequencing (RNA-seq) experiment where RNA was extracted from tenocyte seeded with BCR. Analysis of enriched pathways of the up-regulated genes revealed that the most enriched pathways were the Hypoxia-inducible factor 1-alpha (HIF1A) regulated networks, implicating the possible mechanism BCR induced ACL regeneration. The subsequent cadaver study was conducted to proof the feasibility of BCR for ACL reconstruction.

This study demonstrated the proof-of-concept of bio-textile braided collagen rope for ACL reconstruction, and the mechanism by which BCR induces natural collagen fibres that positively regulate morphology and function of tenocytes.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 1 - 1
1 Dec 2022
Wang A(T Steyn J Drago Perez S Penner M Wing K Younger ASE Veljkovic A
Full Access

Progressive collapsing foot deformity (PCFD) is a common condition with an estimated prevalence of 3.3% in women greater than 40 years. Progressive in nature, symptomatic flatfoot deformity can be a debilitating condition due to pain and limited physical function; it has been shown to have one of the poorest preoperative patient reported outcome scores in foot and ankle pathologies, second to ankle arthritis. Operative reconstruction of PCFD can be performed in a single-stage manner or through multiple stages. The purpose of this study is to compare costs for non-staged (NS) flatfoot reconstructions, which typically require longer hospital stays, with costs for staged (S) reconstructions, where patients usually do not require hospital admission. To our knowledge, the comparison between single-staged and multi-staged flatfoot reconstructions has not been previously done. This study will run in conjunction with one that compares rates of complications and reoperation, as well as patient reported outcomes on function and pain associated with S and NS flatfoot reconstruction. Overall, the goal is to optimize surgical management of PCFD, by addressing healthcare costs and patient outcomes.

At our academic centre with foot and ankle specialists, we selected one surgeon who primarily performs NS flatfoot reconstruction and another who primarily performs S procedures. Retrospective chart reviews of patients who have undergone either S or NS flatfoot reconstruction were performed from November 2011 to August 2021. Length of operating time, number of primary surgeries, length of hospital admission, and number of reoperations were recorded. Cost analysis was performed using local health authority patient rates for non residents as a proxy for health system costs. Rates of operating room per hour and hospital ward stay per diem in Canadian dollars were used. The analysis is currently ongoing.

72 feet from 66 patients were analyzed in the S group while 78 feet from 70 patients were analyzed in the NS group. The average age in the S and NS group are 49.64 +/− 1.76 and 57.23 +/− 1.68 years, respectively. The percentage of female patients in the S and NS group are 63.89% and 57.69%, respectively. All NS patients stayed in hospital post-operatively and the average length of stay for NS patients is 3.65 +/− 0.37 days. Only 10 patients from S group required hospital admission.

The average total operating room cost including all stages for S patients was $12,303.12 +/− $582.20. When including in-patient ward costs for patients who required admission from S group, the average cost for operating room and in-patient ward admission was $14,196.00 +/− $1,070.01 after flatfoot reconstruction.

The average in-patient ward admission cost for NS patients was $14,518.83 +/− $1,476.94 after flatfoot reconstruction. The cost analysis for total operating room costs for NS patients are currently ongoing. Statistical analysis comparing S to NS flatfoot reconstruction costs are pending.

Preliminary cost analysis suggests that multi-staged flatfoot reconstruction costs less than single-staged flatfoot reconstruction. Once full assessment is complete with statistical analysis, correlation with patient reported outcomes and complication rate can guide future PCFD surgical management.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 109 - 109
1 Dec 2022
Perez SD Britton J McQuail P Wang A(T Wing K Penner M Younger ASE Veljkovic A
Full Access

Progressive collapsing foot deformity (PCFD) is a complex foot deformity with varying degrees of hindfoot valgus, forefoot abduction, forefoot varus, and collapse or hypermobility of the medial column. In its management, muscle and tendon balancing are important to address the deformity. Peroneus brevis is the primary evertor of the foot, and the strongest antagonist to the tibialis posterior. Moreover, peroneus longus is an important stabilizer of the medial column. To our knowledge, the role of peroneus brevis to peroneus longus tendon transfer in cases of PCFD has not been reported.

This study evaluates patient reported outcomes including pain scores and any associated surgical complications for patients with PCFD undergoing isolated peroneus brevis to longus tendon transfer and gastrocnemius recession.

Patients with symptomatic PCFD who had failed non-operative treatment, and underwent isolated soft tissue correction with peroneus brevis to longus tendon transfer and gastrocnemius recession were included. Procedures were performed by a single surgeon at a large University affiliated teaching hospital between January 1 2016 to March 31 2021. Patients younger than 18 years old, or undergoing surgical correction for PCFD which included osseous correction were excluded.

Patient demographics, medical comorbidities, procedures performed, and pre and post-operative patient related outcomes were collected via medical chart review and using the appropriate questionnaires.

Outcomes assessed included Visual Analogue Scale (VAS) for foot and ankle pain as well as sinus tarsi pain (0-10), patient reported outcomes on EQ-5D, and documented complications.

Statistical analysis was utilized to report change in VAS and EQ-5D outcomes using a paired t-test. Statistical significance was noted with p<0.05.

We analysed 43 feet in 39 adults who fulfilled the inclusion criteria. Mean age was 55.4 ± 14.5 years old. The patient reported outcome mean results and statistical analysis are shown in Table one below. Mean pre and post-operative foot and ankle VAS pain was 6.73, and 3.13 respectively with a mean difference of 3.6 (p<0.001, 95% CI 2.6, 4.6). Mean pre and post-operative sinus tarsi VAS pain was 6.03 and 3.88, respectively with a mean difference of 2.1 (p<0.001, 95% CI 0.9, 3.4). Mean pre and post-operative EQ-5D Pain scores were 2.19 and 1.83 respectively with a mean difference of 0.4 (p=0.008, 95% CI 0.1, 0.6). Mean follow up time was 18.8 ± 18.4 months.

Peroneus brevis to longus tendon transfer and gastrocnemius recession in the management of symptomatic progressive collapsing foot deformity significantly improved sinus tarsi and overall foot and ankle pain. Most EQ-5D scores improved, but did not reach statistically significant values with the exception of the pain score. This may have been limited by our cohort size. To our knowledge, this is the first report in the literature describing clinical results in the form of patient reported outcomes following treatment with this combination of isolated soft tissue procedures for the treatment of PCFD.

For any figures or tables, please contact the authors directly.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 902 - 908
1 Jul 2022
Hsu P Lee C Lin S Kuo KN Wu K Wang T

Aims

The aim of this study was to compare outcomes of guided growth and varus osteotomy in treating Kalamchi type II avascular necrosis (AVN) after open reduction and Pemberton acetabuloplasty for developmental dysplasia of the hip (DDH).

Methods

This retrospective study reviewed patients undergoing guided growth or varus osteotomy for Kalamchi type II AVN between September 2009 and January 2019. All children who had undergone open reduction and Pemberton acetabuloplasty for DDH with a minimum two-year follow-up were enrolled in the study. Demographic and radiological data, which included the head-shaft angle (HSA), neck-shaft angle (NSA), articulotrochanteric distance (ATD), Sharp angle (SA), and lateral centre-edge angle (LCEA) at baseline, two years, and at the extended follow-up, were compared. Revision rates were evaluated. Clinical outcomes using the Harris Hip Score were assessed two years postoperatively.


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1242 - 1247
3 Sep 2020
Hsu P Wu K Lee C Lin S Kuo KN Wang T

Aims

Guided growth has been used to treat coxa valga for cerebral palsy (CP) children. However, there has been no study on the optimal position of screw application. In this paper we have investigated the influence of screw position on the outcomes of guided growth.

Methods

We retrospectively analyzed 61 hips in 32 CP children who underwent proximal femoral hemi epiphysiodesis between July 2012 and September 2017. The hips were divided into two groups according to the transphyseal position of the screw in the coronal plane: across medial quarter (Group 1) or middle quarter (Group 2) of the medial half of the physis. We compared pre- and postoperative radiographs in head-shaft angle (HSA), Reimer’s migration percentage (MP), acetabular index (AI), and femoral anteversion angle (FAVA), as well as incidences of the physis growing-off the screw within two years. Linear and Cox regression analysis were conducted to identify factors related to HSA correction and risk of the physis growing-off the screw.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 82 - 82
1 Nov 2018
Chen L Yao F James C Wang T Gao J Beaumont O Wood D Zheng M
Full Access

Osteoarthritis (OA) is traditionally believed to affect the osteochondral unit by wear-and-tear from the superficial zone to the deep zone of cartilage and extended to subchondral plate. Obesity is commonly considered as a risk of OA development and hence total knee replacement (TKR), but the mechanism remains unclear. We hypothesized that obesity accelerated OA development by deteriorating tidemarks and increasing bone remodelling. 616,495 cases of TKR for OA from Australia and British joint replacement registries were collected, and data indicated that patients with higher BMI had TKR at earlier age. Specifically, patients with BMI ≤25kg/m2 showed 8 years younger than patients with BMI ≥40kg/m2 (P<0.0001) when they received TKR. We next examined tibia plateaus of 88 knee OA patients by micro-CT and histomorphometry. Linear regression showed that less cartilage degradation was associated with increased BMI in the load-bear compartment (p<0.05), while 58.3% of patients with BMI≥40kg/m2 demonstrated a clear anatomical separation close to tidemarks filled with fibrosis, erythrocytes and bone fragments (compared to BMI ≤25kg/m2 group: 7.7%, p<0.01). In subchondral bone, elevated bone formation was associated with increased BMI, as higher thickness of osteoid (p<0.01), percent osteoid volume (p<0.01), percent osteoid surface (p<0.01) were found in obese patients. However, no alteration of bone resorption and microstructural parameters was found to be associated with BMI. We suspected that the abnormal loading in knee joint due to high BMI led to the direct deterioration of binding site of osteochondral unit, which might be the mechanism of the rapid progression in obesity-related OA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 135 - 135
1 Nov 2018
Chen PL Wang T Zheng MH
Full Access

Orthopaedic infection with bacteria leads to high societal cost and is detrimental to the life quality. Particularly, deep bone infection leading to osteomyelitis results in an inflammatory response whereby localized bone destruction occurs. Current treatments like antibiotic-containing polymethymethacrylate (PMMA) still has the high risk of bacterial resistance. Taking advantages of silver which has antibacterial and anti-inflammatory effect and bioactive collagen, we fabricated a silver nanoparticle (AgNP)-coated collagen membrane by sonication and sputtering. SEM showed good deposition of AgNPs on collagen membrane by both coating methods. The optimal coating concentration was finalized by assessing optimal antibacterial effect against cytotoxicity and finally collagen membrane coated with 1mg/mL AgNPs solution was selected. We also found that the coated collagen membrane demonstrating short-term cytotoxicity within 24 hours with damage to the cell membrane, which was evidenced by MTS and LDH release test, but had no significant influence (p > 0.05) thereafter. The amount of released AgNPs from coated collagen membrane had negligible cytotoxicity (p > 0.05). Confocal laser scanning microscope displayed similar cell morphology in both coated and uncoated collagen membrane. ELISA and qPCR presented the decreased secretion and expression (p < 0.001) of IL-6 and TNF-alpha. Upregulated expression (p < 0.001) of osteogenesis markers (RUNX2, ALP and OPN) could be found and this might be attributed to the modified collagen fibre surface coated by AgNPs. Collectively, the osteogenesis induced by AgNPs demonstrates a promising application in orthopaedic surgery for its use both as an antimicrobial agent, and to enhance bone regeneration.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 57 - 57
1 Nov 2018
Wang T Wagner A Thien C Gehwolf R Kunkel N Tempfer H Jiang Q Traweger A Zheng M
Full Access

Mechanical loading plays an essential role in both tendon development and degradation. However, the underlying mechanism of how tendons sense and response to mechanical loading remains largely unknown. SPARC, a multifunctional extracellular matrix glycoprotein, modulates cell extracellular matrix contact, cell-cell interaction, ECM deposition and cell migration. Adult mice with SPARC deficiency exhibited hypoplastic tendons in load-bearing zone. By investigating tendon maturation in different stages, we found that hypoplastic tendons developed at around postnatal 3 weeks when the mice became actively mobile. The in vitro experiments on primary tendon derived stem cells demonstrated that mechanical loading induced SPARC production and AKT/S6K signalling activation, which was disrupted by deleting SPARC causing reduced collagen type I production, suggesting that mechanical loading was harmful to tendon homeostasis without SPARC. In vivo treadmill training further confirmed that increased loading led to reduced Achilles tendon size and eventually caused tendon rupture in SPARC-/− mice, whereas no abnormality was seen in WT mice after training. We then investigate whether paralysing the hindlimb of SPARC-/− mice using BOTOX from postnatal 2 weeks to 5 weeks would delay the hypoplastic tendon development. Increased patellar tendon thickness was shown in SPARC-/− mice by reducing mechanical loading, whereas opposite effect was seen in WT mice. Finally, we identified a higher prevalence of a missense SNP in the SPARC gene in patients who suffered from a rotator cuff tear. In conclusion, SPARC is a mechano-sensor that regulates tendon development and homeostasis.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 32 - 32
1 Jan 2017
Hong S Wang T Lu T Kuo C Hsu H
Full Access

Identification of gait deviations and compensations in patients with total hip arthroplasty (THA) is important for the management of their fall risks. To prevent collapse of the lower limbs while balancing and supporting the body, proper combinations of joint moments are necessary. However, hip muscles affected by THA may compromise the sharing of load and thus the whole body balance. The current study aimed to quantify the control of body support in patients with THA in terms of the total support moment (Ms) and contributions of individual joint moments to Ms during walking.

Six patients who underwent unilateral THA via an anterolateral approach for at least six months at the time of the gait experiment, and six age- and gender-matched healthy controls were recruited. Twenty-eight infrared retro-reflected markers were placed on specific landmarks of the pelvis-leg apparatus to track the motion of the segments during walking. Kinematic and kinetic data were measured using an 8-camera motion analysis system (Vicon, Oxford Metrics, U.K.) and two force plates (AMTI, U.S.A.). The Ms of a limb was calculated as the sum of the net extensor moments at the hip, knee and ankle during stance phase. The contributions of the hip, knee and ankle to the first and second peaks of Ms (Ms1 and Ms2) were calculated by dividing the joint moment value by the corresponding peak values of Ms. Independent t-tests were performed to compare between groups at a significance level set at α=0.05 using SAS version 9.2 (SAS Institute Inc., NC, USA).

No significant differences in Ms1 and Ms2 were found between the THA group and normal controls (P >0.05). However, compared to the healthy controls, significantly increased hip and ankle contributions but decreased knee contributions to Ms1, and significantly increased hip contributions but decreased ankle contributions to Ms2 were found in the THA group.

Similar Ms1 and Ms2 between groups indicates that the lower limbs in the THA group were able to provide normal body supports. However, this was achieved via an altered contributions of the hip, knee and ankle. Hip and knee extensors play important roles in supporting the body when the Ms1 occurs during early stance of walking. In the THA group, greater hip and ankle contributions but lesser knee contributions for the Ms1 indicates that the function of hip extensors were not affected but compensatory mechanisms of the knee and ankle were found. For the Ms2, hip flexor and ankle plantarflexors are important for supporting the body during late stance. Decreased hip flexor (i.e., greater hip extensor contributions) and ankle plantarflexor moments in the THA patients suggests that the hip flexors and ankle plantarflexor muscles were affected by THA surgery. Hip muscles affected by the THA may compromise the sharing of load at the hip and thus the whole body balance. Further postoperative rehabilitation is suggested for the patients following THA. Further studies on the effects of different surgical approaches on the support moments is needed for improving treatment plans.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1145 - 1150
1 Aug 2016
Wang C Wang T Wu K Huang S Kuo KN

Aims

This study compared the long-term results following Salter osteotomy and Pemberton acetabuloplasty in children with developmental dysplasia of the hip (DDH). We assessed if there was a greater increase in pelvic height following the Salter osteotomy, and if this had a continued effect on pelvic tilt, lumbar curvature or functional outcomes.

Patients and Methods

We reviewed 42 children at more than ten years post-operatively following a unilateral Salter osteotomy or Pemberton acetabuloplasty. We measured the increase in pelvic height and the iliac crest tilt and sacral tilt at the most recent review and at an earlier review point in the first decade of follow-up. We measured the lumbar Cobb angle and the Short Form-36 (SF-36) and Harris hip scores were collected at the most recent review.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 64 - 64
1 May 2016
Munir S Wang T Regazzola G Walsh W
Full Access

Introduction

Cementless devices can be designed with varying surface treatments with the hope of achieving osseointegration. The surface finish dictates the interaction, adhesion and growth of bone therefore it is an important parameter that be measured and compared. The surface topography of a material can be viewed both microscopically and macroscopically. Surface microtopography focuses on the peaks and valleys where deviations in the characteristics of the size and spacing of these features determine the variability between surface topography. The most common parameter used worldwide to describe surface roughness is the arithmetic average height (Ra). The definition of Ra is the absolute deviation of the surface irregularities from a mean line across the sampling length given by the equation shown in figure 1.

Many techniques can be used to relate to surface characteristics of materials, with the common two options revolving around contact and non-contact methods. These techniques are expensive and are limited in detecting the interaction of implantable devices at a macroscopic level. This study sought to develop a method to determine the surface roughness and characterise implants based on cross sectional images and scanning electron microscopy.

Method

The profile of 6 trunnions from a total hip replacement was obtained in x and y coordinates along a set length using a profilometer. A custom program to calculate the Ra of the material was created using a mathematical program (MATLAB). Each material profile was inputted into a mathematical program to provide the surface roughness of the material. The surface parameters were initially obtained from a surface analyser to determine the accuracy of the program.


Summary Statement

We have developed 3D combinatorial hydrogels containing cartilage extracellular matrix (ECM) proteins for modulating chondrogenesis of adipose-derived stromal cells. Our platform allows independently tunable biochemical and mechanical properties, which may provide a valuable tool for elucidating how ECM biochemical cues interact with matrix stiffness to regulate stem cell chondrogenesis.

Introduction

Adipose-derived stromal cells (ADSC) hold great promise for cartilage repair given their relative abundance and ease of isolation. Biomaterials can serve as artificial niche to direct chondrogenesis of ADSCs, and extracellular matrix (ECM) protein-based scaffolds are highly biomimetic. However, incorporating ECM molecules into hydrogel network often lead to simultaneous changes in both biochemical ligand density and matrix stiffness. This makes it difficult to understand how various niche signals interact together to regulate ADSC fate. To overcome these limitations, the goal of this study is to develop an ECM-containing hydrogel platform with independently tunable biochemical and mechanical cues for modulating ADSC chondrogenesis in 3D. We hypothesise that decreasing the degree of crosslinking of ECM molecules may allow their incorporation without affecting the matrix stiffness. The effects of interactive signaling between ECM molecules and matrix stiffness on ADSC chondrogenesis in 3D was then examined using this platform


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 59 - 59
1 Aug 2013
Niu X Zhang Q Yu F Wang T Zhao H Xu L
Full Access

Background

Resection of sacral chordoma remains challenging because complex anatomy and important nerves in the sacrum make it difficult to achieve wide surgical margins. Computer-assisted navigation has shown promise in aiding in optimal preoperative planning and in providing accurate and precise tumour resection during surgery.

Purpose

To evaluate the benefit of using computer-assisted navigation in precise resection of sacral chordoma.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 57 - 57
1 Aug 2013
Wang J Hu L Zhao C Su Y Wang T Wang M
Full Access

Objectives

Percutaneous iliosacral screw placement is a standard, stabilization technique for pelvic fractures. The purpose of this study was to assess the effectiveness of a novel biplanar robot navigation aiming system for percutaneous iliosacral screw placement in a human cadaver model.

Methods

A novel biplanar robot navigation aiming system was used in 16 intact human cadaveric pelvises for percutaneous iliosacral screw insertion. The number of successful screw placements and mean time for this insertion and intra-operative fluoroscopy per screw-pair were recorded respectively to evaluate the procedure. The accuracy of the aiming process was evaluated by computed tomography.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 360 - 360
1 Mar 2013
Wang T Pelletier M Bertollo N Crosky A Walsh W
Full Access

Introduction

Implant contamination prior to cement application has the potential to affect the cement-implant bond. the consequences of implant contamination were investigated in vitro using static shear loading with bone cement and titanium dowels of differing surface roughness both with, and without contamination by substances that are likely to be present during surgery. Namely; saline, fat, blood and oil, as a negative control.

Methods

Fifty Titanium alloy (Ti-6Al-4V) dowels were prepared with two surface finishes comparable to existing stems. The roughness (Ra and Rq) of the dowel surface was measured before and after the pushout test. Four contaminants (Phosphate Buffered Saline (PBS), ovine marrow, ovine blood, olive oil) were prepared and heated to 37°C. Each contaminant was smeared on the dowel surface completely and uniformly approximately 4 minutes prior to implantation. Samples were separated into ten groups (n=5 per group) based on surface roughness and contaminant. Titanium alloy dowels was placed in the center of Polyvinyl chloride (PVC) tubes with bone cement, and equilibrated at 37°C in PBS for 7 days prior to mechanical testing. The push out test was performed at 1 mm per minute. The dowel surface and cement mantel were analyzed using a Scanning Electron Microscopy (SEM) to determine the distribution and composition of any debris and contaminates on the surface.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 227 - 230
1 Feb 2012
Yang T Wang T Tsai Y Huang K

In patients with traumatic brain injury and fractures of long bones, it is often clinically observed that the rate of bone healing and extent of callus formation are increased. However, the evidence has been unconvincing and an association between such an injury and enhanced fracture healing remains unclear. We performed a retrospective cohort study of 74 young adult patients with a mean age of 24.2 years (16 to 40) who sustained a femoral shaft fracture (AO/OTA type 32A or 32B) with or without a brain injury. All the fractures were treated with closed intramedullary nailing. The main outcome measures included the time required for bridging callus formation (BCF) and the mean callus thickness (MCT) at the final follow-up. Comparative analyses were made between the 20 patients with a brain injury and the 54 without brain injury. Subgroup comparisons were performed among the patients with a brain injury in terms of the severity of head injury, the types of intracranial haemorrhage and gender. Patients with a brain injury had an earlier appearance of BCF (p < 0.001) and a greater final MCT value (p < 0.001) than those without. There were no significant differences with respect to the time required for BCF and final MCT values in terms of the severity of head injury (p = 0.521 and p = 0.153, respectively), the types of intracranial haemorrhage (p = 0.308 and p = 0.189, respectively) and gender (p = 0.383 and p = 0.662, respectively).

These results confirm that an injury to the brain may be associated with accelerated fracture healing and enhanced callus formation. However, the severity of the injury to the brain, the type of intracranial haemorrhage and gender were not statistically significant factors in predicting the rate of bone healing and extent of final callus formation.