header advert
Results 1 - 9 of 9
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 25 - 25
2 Jan 2024
Saldaña L Vilaboa N García-Rey E
Full Access

The pathophysiological basis of alterations in trabecular bone of patients with osteonecrosis of the femoral head (ONFH) remains unclear. ONFH has classically been considered a vascular disease with secondary changes in the subchondral bone. However, there is increasing evidence suggesting that ONFH could be a bone disease, since alterations in the functionality of bone tissue distant from the necrotic lesion have been observed. We comparatively studied the transcriptomic profile of trabecular bone obtained from the intertrochanteric region of patients with ONFH without an obvious aetiological factor, and patients with osteoarthritis (OA) undergoing total hip replacement in our Institution. To explore the biological processes that could be affected by ONFH, we compared the transcriptomic profile of trabecular bone from the intertrochanteric region and the femoral head of patients affected by this condition. Differential gene expression was studied using an Affymetrix microarray platform. Transcriptome analysis showed a differential signature in trabecular bone from the intertrochanteric region between patients with ONFH and those with OA. The gene ontology analyses of the genes overexpressed in bone tissue of patients with ONFH revealed a range of enriched biological processes related to cell adhesion and migration and angiogenesis. In contrast, most downregulated transcripts were involved in cell division. Trabecular bone in the intertrochanteric region and in the femoral head also exhibited a differential expression profile. Among the genes differentially expressed, we highlighted those related with cytokine production and immune response. This study identified a set of differently expressed genes in trabecular bone of patients with idiopathic ONFH, which might underlie the pathophysiology of this condition.

Acknowledgements: This work was supported by grants PI18/00643 and PI22/00939 from ISCIII-FEDER, Ministerio de Ciencia, Innovación y Universidades (MICINN)-AES.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 80 - 80
2 Jan 2024
Lerma-Juárez M Escudero-Duch C Serrano-Yamba R Moreno-García A Yus C Arruebo M Vilaboa N
Full Access

We have developed plasmonic fibrin-based hydrogels that incorporate gold nanoparticles which transduce incident near-infrared (NIR) light into heat. Human adenovirus serotype type-5 vectors encoding a firefly luciferase (fLuc) coding sequence driven by a heat-inducible promoter were incorporated into the hydrogels. Transmission electronic microscopic analysis revealed that the adenoviral vectors were associated to the fibrin fibers. In vitro experiments in which human cells were cultured with plasmonic hydrogels showed that the adenoviral vectors can diffuse from the hydrogels, transduce the cells, and stimulate heat-induced transgene expression upon NIR irradiation. The hydrogels were implanted in 4.2 mm drill hole defects generated in the humerus of male rabbits. Three days after implantation, the defects were NIR-irradiated. Six h later, the animals were euthanized and samples from the bone defect zone were processed for immunohistochemical analyses using a specific fLuc antibody. The results showed strong expression of fLuc in tissues surrounding the implants of NIR-irradiated rabbits, while non- irradiated animals exhibited negligible expression. We next aimed to use the temperature increase to induce the production of transgenic bone morphogenetic protein 6 (BMP-6), using safe gene switches that can provide tighter control of in vivo transgene expression than heat-inducible promoters. These switches are only activated by heat in the presence of rapamycin and maintain a high level of targeted transgene expression for several days after heat activation. Adenoviral vectors encoding the safe switches that control the expression of BMP-6 were incorporated to the composites. The resulting NIR-responsive hydrogels were implanted in the bone defects generated in rabbits and used as a platform to transduce host cells, generate local hyperthermia and stimulate BMP-6 production.

Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 126 - 126
2 Jan 2024
Escudero-Duch C Serrano-Yamba R Sánchez-Casanova S Falguera-Uceda M Yus C Lerma-Juárez M Arruebo M Vilaboa N
Full Access

In this work, we combined tissue engineering and gene therapy technologies to develop a therapeutic platform for bone regeneration. We have developed photothermal fibrin-based hydrogels that incorporate degradable CuS nanoparticles (CuSNP) which transduce incident near-infrared (NIR) light into heat. A heat-activated and rapamycin-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in the photothermal hydrogels. In the presence of rapamycin, photoinduced mild hyperthermia induced the release of BMP-2 from the NIR responsive cell constructs. Transcriptome analysis of BMP-2 expressing cells showed a signature of induced genes related to stem cell proliferation and angiogenesis. We next generated 4 mm diameter calvarial defects in the left parietal bone of immunocompetent mice. The defects were filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the gene circuit. After one and eight days, rapamycin was administered intraperitoneally followed by irradiation with an NIR laser. Ten weeks after implantation, the animals were euthanized and samples from the bone defect zone were processed for histological analysis using Masson's trichrome staining and for immunohistochemistry analyses using specific CD31 and CD105 antibodies. Samples from mice that were only administered rapamycin or vehicle or that were only NIR-irradiated showed the persistence of fibrous tissue bridging the defect. In animals that were treated with rapamycin, NIR irradiation of implants resulted in the formation of new mineralized tissue with a high degree of vascularization, thus indicating the therapeutic potential of the approach.

Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 70 - 70
4 Apr 2023
Maestro-Paramio L García-Rey E Bensiamar F Rodríguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts.

Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head.

Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels.

Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective

Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts.

Materials and Method

Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 18 - 18
1 Nov 2018
Martín-Saavedra FM Sánchez-Casanova S Escudero-Duch C Falguera M Prieto M Arruebo M Santamaría J Vilaboa N
Full Access

There is a growing interest in the development of tissue engineering (TE) therapies to repair damaged bone. Among the scaffolds for TE applications, injectable hydrogels have demonstrated great potential as three-dimensional cell cultures in bone TE, owing to their high water content, porous structure that allows cell transplantation and proliferation, similarity to the natural extracellular matrix and ability to match irregular defects. We investigated whether fibrin-based hydrogels capable of transducing near infrared (NIR) energy into heat can be employed to lead bone repair. Hollow gold nanoparticles with a plasmon surface band absorption at ∼750 nm, a NIR wavelength within the so called “tissue optical window”, were used as fillers in injectable fibrin-based hydrogels. These composites were loaded with genetically-modified cells harbouring a heat-activated and rapamycin-dependent gene circuit to regulate transgenic expression of the reporter gene firefly luciferase (fLuc). NIR-responsive cell constructs were injected to fill a 4 mm diameter critical-sized defect (CSD) in the parietal bone of mouse calvaria. NIR-irradiation in the presence of rapamycin triggered a pattern of fLuc activity that faithfully matched the illuminated area of the implanted hydrogel. Having shown that this platform can control the expression of a transgene product, we tested its effectiveness on regulating the secretion of transgenic bone morphogenetic protein 2 (BMP-2) from NIR-responsive hydrogels implanted in CSD. The spatiotemporal pattern of transgenic BMP-2 secretion induced by NIR-irradiation in the presence of rapamycin significantly stimulated bone regeneration from the edge of osteotomy in the CSD practiced, validating the therapeutic approach.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 93 - 93
1 Nov 2018
Martín-Saavedra FM Escudero-Duch C Prieto M Sánchez-Casanova S López D Arruebo M Voellmy R Santamaría J Vilaboa N
Full Access

As near-infrared (NIR) photothermal agents, copper sulfide nanoparticles (CuSNP) offer several advantages over plasmonic gold nanoparticles (GNP), the most widely used photothermal nanotransducers in biomedical applications. CuSNP exhibit strong optical absorption at NIR wavelengths (650–1100 nm) and convert it into heat due excitation of electronic transitions or plasmonic photoexcitation. In contrast with GNP, CuSNP are degradable, readily prepared, inexpensive to produce, efficiently cleared from the body and their photothermal efficiency is less sensitive to the dielectric constant of the surrounding medium. We explored the feasibility of CuSNP to function as degradable NIR nanotransducers within fibrin-based cellular scaffolds, paying great attention to the stability and photothermal efficiency of the composite. We tested in vitro and in vivo whether NIR-responsive fibrin hydrogels comprising CuSNP (CuSNP hydrogels) are reliable platforms for triggering transgene expression in cells harboring a gene circuit activatable by heat and dependent of rapamycin. NIR laser irradiation of the CuSNP hydrogels increased local temperature and, in the presence of rapamycin, triggers the gene switch based on the promoter of the highly heat-inducible HSP70B gene (HSPA7). After implantation of such a cell-containing CuSNP hydrogel, transgenic expression can be remotely triggered by NIR-irradiation. Interestingly, we found that CuSNP hydrogels induce remodeling activity in stem cells and stimulate an angiogenic response. In short, CuSNP hydrogels offer compelling features for tissue engineering applications, as fully degradable implants with enhanced integration capacity in host tissues that can provide for remote control in the deployment of therapeutic gene products.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 290 - 290
1 Jul 2014
Calzado-Martín A Crespo L Saldaña L Boré A Gómez-Barrena E Vilaboa N
Full Access

Summary

Attachment, proliferation and osteogenic maturation of hMSCs are enhanced on a sub-micron grooved Ti6Al4V alloy, while osteoblasts are less sensitive. These effects are attributed to their different maturation stage and may be mediated through differential activation of the RhoA/ROCK pathway.

Introduction

Ti6Al4V alloy is the most widely used titanium-based biomaterial for manufacturing bone-anchoring devices. We report on the interactions of human bone-forming cells, mesenchymal stem cells from bone marrow (hMSCs) and primary osteoblasts (hOBs), with an anisotropic Ti6Al4V alloy that displays submicron grooves.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 183 - 184
1 May 2011
Vallés G Vilaboa N Munuera L García-Cimbrelo E
Full Access

The biological response to implant-derived wear particles is recognized as one of the main factors involved in the development of periprosthetic osteolysis. Wear particles induce a foreign-body inflammatory response that results in the formation of a periprosthetic membrane and progresses over time to aseptic loosening and implant failure. Upon exposure to particles, macrophages and other cell types release inflammatory cytokines to the periprosthetic milieu such as inter-leukin-1 beta (IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) which contribute to bone resorption. Heat shock proteins (HSP) are intra-cellular proteins involved in the maintenance of cellular homeostasis. The stress inducible form of the Hsp70 family protein, Hsp72, has been detected in circulation, acting as a factor capable of regulating pro-inflammatory cytokines secretion and it has been demonstrated that induces the production of pro-inflammatory cytokines via the CD14 and Toll-like receptor-mediated signal transduction pathway.

We hypothesized that Hsp72 could be involved in the inflammatory response to wear particles. To this aim, we investigated Hsp72 and its receptor, CD14, in interfacial membrane specimens obtained from patients undergoing revision surgery for aseptic loosening of uncemented acetabular cups (n=7). Distribution of both proteins was assessed by immunofluorescence and examined by confocal laser scanning microscopy. Hsp72 was detected in the periprostehetic membranes, colocalizing with CD14. Explants of membranes were cultured in vitro and levels of Hsp72 and IL-6 were determined by ELISA after 24, 48 and 72 h (n=9). Cultured membranes released IL-6 to culture medium in a time-dependent manner (p< 0.05), while Hsp72 levels decreased during same observation period (p< 0.05). These data suggest that, rather than being produced by the periprosthetic tissue, Hsp72 might be recruited by CD14+ cells from extracellular fluids. In this regard, preliminary data indicated that soluble Hsp72 levels in sera from patients undergoing revision surgery due to aseptic loosening were significantly lower than those from age-matched control subjects (n=6; p< 0.001). To investigate the involvement of Hsp72 in the inflammatory response to wear particles, we used a cell culture model of THP-1 cells driven to the monocyte/macrophage differentiation pathway. These cells were exposed to titanium particles of phagocytosable sizes, either in the presence or absence of exogenously added Hsp72. results obtained to date indicate that Hsp72 is able to modulate the titanium-induced TNF-alpha, IL-1 beta and IL-6 secretion (p< 0.05). Altogether, our data suggest that Hsp72 could be a novel mediator involved in wear particles-induced osteolysis and prosthetic failure.