header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 99 - 99
1 Apr 2019
Muratli SK Karatosun V Uzun B Gunal I
Full Access

Background

Tigecycline, the first member of glycylcycline family, has effective antimicrobial activity against resistant and implant associated infectious organisms. The objectives of this study are to assess the compressive and tensile mechanical strength characteristics of tigecycline loaded bone cement and to compare them with vancomycin and daptomycin loaded bone cements which are used in prosthetic joint infections with resistant microorganisms.

Methods

A control group without antibiotics and three antibiotic loaded bone cement groups with varying concentrations (1g, 2g and 3g vancomycin, 0.5g, 1g and 1.5g daptomycin and 50mg, 100mg and 150mg tigecycline) were prepared and tested according to ASTM F451 and ISO 5833 standards. Statistical analysis of the obtained data done by using LSD (least significant difference) and Bonferroni corrected Mann Whitney tests.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 88 - 88
1 Jan 2017
Uzun B Havitcioglu H
Full Access

Shortness of an extremity due to different causes is an issue that may adversely affect human life functional and psychologically. In this study, in the light of previous studies, it is aimed to develop a new expandable intramedullary system, providing lengthening in order to remove previous problems and complications and to annihilate leg length discrepancies at present and future without second surgical intervention as far as possibble by lenghtening the intramedullary nail. To this end, a new electromechanically activated intramedullary nail has been designed and generated.

The intramedullary nail was designed to perform extremity lengthening electro-mechanically. The 3D design of the system is performed with computer software and the rapid and metal prototype of the system has been produced. The intramedullary nail system is comprised of three main units; Mechanical transmission unit, Electronic unit, Lengthening unit. The nail system is designed to function both mechanically and electronically complying with the requirement. This also provides an advantage that if any one (mechanic or electronic) fails, the lengthening process can continue with the other.

Compression tests are applied in order to evaluate the strength of the system. The deformation values of the parts are recorded and stress values of each parts were calculated.

The new system needs only 300N loading for mechanical lengthening. When 800N is considered as average human weight, the implant must withstand minumum 2400N load. Considering the safety conditions, we applied 4000N load on the new system. At 4000N, the whole system shows only 1.465 mm deformation which is less than the gap between the two bone parts. Also, when the system is implanted inside the bone, the loads are distributed proportionally between the bone and the implant. So, except for extraordinary conditions, the newly developed system is highly rigid and safe.

In each applied method, lots of complications whether general or method-specific are seen. When the methods like Albizzia, ISKD and FITBONE avaliable and widely used today are examined separately, complications specific to these methods can be clearly observed [1–12].

Bliskunov Nail, Albizzia Nail and ISKD [13–18] have mechanical working principles and in these systems, lengthening process is obtained by rotational movement of the extremity. This rotational movement causes complications like pain, dislocation and uncontrolled lengthening [11,13,16,19–21]. In our newly developed system, only axial stimulation is needed for the activation of the mechanism. This is one of the advantages of our system. Both the mechanical unit and the electronical units are designed to be extended 0.1 mm at each activation. This means that the optimal amount of distraction (1mm/day) can be achieved in a controlled way. In other systems, the distraction amount can not be fully controlled and complications seen on other systems [1, 6, 8–10], like distruption of callus due to the excessive distraction and nonunion of the bone can be encountered

The success of the system at practice will be examined with in-vivo animal experiments and according to the results, it will be ready for use on human by performing necessary restorations.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 87 - 87
1 Jan 2017
Basci O Erduran M Acan A Uzun B Karakasli A
Full Access

Basic engineering principles dictate that unplugged screw holes serve as sites of the concentration of stress and the initiation and growth of cracks (1,2). The idea of filling the holes were tested previously in the literature showing promising results (3). However there's either adverse results which might be a design mistake (4). The purpose of this study was to determine if the use of specially designed screw hole inserts in empty locking screw holes improves the strength and failure characteristics of locking plates.

Forty two 7-hole locking LC/DCP plates were mounted on cylindric UHMW Polyethylene blocks with a 1-cm gap between blocks, simulating a fracture with comminution and bone loss. 21 plates had a screw hole insert placed in the center hole (centered over the simulated fracture), while 21 of the plates remained empty in the center hole. The plate–block constructs were placed in a mechanical testing machine and subjected to a series of loading conditions. The axial, bending and torsional stiffness and displacements needed for failure of each plate-block construct was calculated. The Statistical analysis was performed by Mann Whitney-U test for independent variables.

All plates were then loaded to failure. There were significant difference in the axial load to failure (p=0.017), bending load to failure (p<0.01) and bending diplacements (p<0.01) of the test groups favoring the screw hole insert group as a higher mechanical strength.

In conclusion the study demonstrates that the addition of the specially designed locking screw hole insert does significantly change the stength of the locking LC/DCP plates and might be suggested in the clinical application.