header advert
Results 1 - 7 of 7
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 227 - 235
18 Mar 2024
Su Y Wang Y Fang C Tu Y Chang C Kuan F Hsu K Shih C

Aims

The optimal management of posterior malleolar ankle fractures, a prevalent type of ankle trauma, is essential for improved prognosis. However, there remains a debate over the most effective surgical approach, particularly between screw and plate fixation methods. This study aims to investigate the differences in outcomes associated with these fixation techniques.

Methods

We conducted a comprehensive review of clinical trials comparing anteroposterior (A-P) screws, posteroanterior (P-A) screws, and plate fixation. Two investigators validated the data sourced from multiple databases (MEDLINE, EMBASE, and Web of Science). Following PRISMA guidelines, we carried out a network meta-analysis (NMA) using visual analogue scale and American Orthopaedic Foot and Ankle Score (AOFAS) as primary outcomes. Secondary outcomes included range of motion limitations, radiological outcomes, and complication rates.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1359 - 1363
1 Oct 2018
Chiu Y Chung T Wu C Tsai K Jou I Tu Y Ma C

Aims

This study reports the outcomes of a technique of soft-tissue coverage and Chopart amputation for severe crush injuries of the forefoot.

Patients and Methods

Between January 2012 to December 2016, 12 patients (nine male; three female, mean age 38.58 years; 26 to 55) with severe foot crush injury underwent treatment in our institute. All patients were followed-up for at least one year. Their medical records, imaging, visual analogue scale score, walking ability, complications, and functional outcomes one year postoperatively based on the American Orthopedic Foot and Ankle Society (AOFAS) and 36-Item Short-Form Health Survey (SF-36) scores were reviewed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 49 - 49
1 Jan 2016
Hsiao C Tsai Y Yu S Tu Y
Full Access

Introduction

Locking plates can provide greater stability than conventional plates; however, reports revealed that fractures had a high incidence of failure without medial column support; the mechanical support of medial column could play a significant role in humeral fractures. Recent studies have demonstrated the importance of intramedullary strut in proximal humeral fracture fixation, the relationship to mechanical stability and supporting position of the strut remain unclear. The purpose of this study was to evaluate the influence of position of the intramedullary strut on the stability of proximal humeral fractures using a locking plate.

Materials and methods

Ten humeral sawbone (Synbone) and locked plates (Synthes, cloverleaf plate), with and without augmented intramedullary strut (five in each group) for proximal humerus fractures, were tested using material testing machine to validate the finite element model. A 10 mm osteotomy was performed at surgical neck and a strut graft (10 cm in length) was inserted into the fracture region to lift the head superiorly. Each specimen was statically tested at a rate of 5 mm/min until failure. To build the finite element (FE) model, 64-slices CT images were converted to create a 3D solid model. The material properties of screws and plates were modeled as isotropic and linear elastic, with an elastic modulus of 110 GPa, (Poisson's ratio, n=0.3). The Young's moduli of cortical and cancellous bones were 17 GPa and 500 MPa (n=0.4), respectively. Three alter shifting toward far cortex by 1, 2, and 3 mm in humeral canal were installed in the simulating model.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 50 - 50
1 Jan 2016
Hsiao C Tsai Y Yang T Hsu C Tu Y
Full Access

Introduction

Distal femur fracture is a critical issue in orthopedic trauma, because it is difficult to manage especially in cases with intra-articular fracture. Osteoporosis may cause instability of implant and increase complications. Few studies investigate on the stability of distal femur osteoporotic fracture and the behaviors under cycling. Our hypothesis was that the stiffness of construct would decrease as cycling in osteoporotic bone.

Materials and Methods

Seven cadaver specimens were used in this study. Relative bone density for each specimen was evaluated using CT scanning by three known calibration phantoms scanned simultaneously with the specimen. All cadaver specimens were divided normal (group 1) and osteoporosis (group 2) in accordance with the bone density. The titanium distal femur locking plates with 6 screws placed in distal femur condyle and 4 in shaft. A 10 mm gap with 65 mm proximal to the center of articular surface and a vertical fractural line between intra-articular were created to simulate AO C2 type fracture. Each specimen was cyclically loaded in two-phase at a frequency of 2 Hz. Phase 1 was set at 1000 N for 10000 cycles. In phase 2, the load was set at 2000 N for 10000 cycles. Then, the specimen was loaded up to failure at a rate of 5 mm/min. Stiffness was evaluated from the linear portion of load-displacement curve at 2000 cycle interval.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1411 - 1416
1 Oct 2015
Li Y Yang S Chen H Kao Y Tu Y

We evaluated the impact of lumbar instrumented circumferential fusion on the development of adjacent level vertebral compression fractures (VCFs). Instrumented posterior lumbar interbody fusion (PLIF) has become a popular procedure for degenerative lumbar spine disease. The immediate rigidity produced by PLIF may cause more stress and lead to greater risk of adjacent VCFs. However, few studies have investigated the relationship between PLIF and the development of subsequent adjacent level VCFs.

Between January 2005 and December 2009, a total of 1936 patients were enrolled. Of these 224 patients had a new VCF and the incidence was statistically analysed with other covariants. In total 150 (11.1%) of 1348 patients developed new VCFs with PLIF, with 108 (72%) cases at adjacent segment. Of 588 patients, 74 (12.5%) developed new subsequent VCFs with conventional posterolateral fusion (PLF), with 37 (50%) patients at an adjacent level. Short-segment fusion, female and age older than 65 years also increased the development of new adjacent VCFs in patients undergoing PLIF. In the osteoporotic patient, more rigid fusion and a higher stress gradient after PLIF will cause a higher adjacent VCF rate.

Cite this article: Bone Joint J 2015;97-B:1411–16.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 76 - 76
1 Aug 2012
Tu Y Xue H Liu X Cai M Xia Z
Full Access

Intramedullary (IM) femoral alignment guide for unicondylar knee arthroplasty (UKA) is a classic and generally accepted technique to treat unicompartmental knee osteoarthritis. However, IM system has a risk of excessive blood loss, fat embolism and activation of coagulation.Moreover, the implant placement and limb alignment may be less accurate in IM for UKA than total knee arthroplasty. So we try to use extramedullary (EM) femoral alignment for UKA to avoid above disadvantages. To our knowledge, few current studies have been reported by now. We reported a series of cases treated through a newly developed EM technique and evaluated the accuracy of femoral component alignment and preliminary clinical results. Between January 2009 and January 2010, 11 consecutive patients(15 knees)consisting of 8 males and 3 females were enrolled. There were 7 cases in unilateral knee and 4 cases in bilateral knees. The mean age was 65.2 years (range 60∼72 years). Incision, surgical time, blood loss and complications were measured. The pre- and post operative function of the knees were evaluated by HSS score system. The pre- and postoperative femoral component alignment was measured and compared. All cases were followed up for average 15 months (10-22 months). The mean length of incision was 7.2cm (range 6 to 8cm), the mean surgical time was 115.0min(range 90 to 125min),the mean blood loss was 50.8ml (range 50 to 80ml). The mean preoperative HSS score increased from 75 (range 63 to 83) to 95 (range 88 to 97) postoperatively (p<0.05). All femoral components were within the recommended range for varus/valgus (±10 degree) and lexion/extension (±5 degree) angle. None had complications associated with reamed canal injury. By using our EM technique, we could achieve an accurate femoral component alignment and satisfactory clinical effect. However, strict comparison between EM and cconventional IM technique and large amount of cases are essential. Further mid- and long-term studies are required.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 68 - 68
1 Aug 2012
Tu Y Xue H Liu X Cai M Xia Z Murray D
Full Access

Great interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has rapidly increased following the introduction of minimally invasive UKA (MI-UKA). This approach preserves the normal anatomy of knee, causes less damage to extensor mechanism and results in a more rapid post-operative recovery. However, experience with this approach is limited in China. The aim of this report was to determine the short-term clinical and radiographic outcomes of MI-UKA in the Chinese, and to identify any features that are unique to this population. Fifty two knees, in forty-eight patients, with medial compartmental osteoarthritis treated by MI-UKA via C-arm intensifier guide (CAIG) from May 2005 to January 2009 were reviewed. Pain and range of motion (ROM) was assessed using the HSS scoring system before and after surgery. Pre- and postoperative alignment of the lower limbs was measured and compared. The mean follow up time was 24 months (12-42 months). In all cases the pain over medial compartment of the knees was relieved or subsided. The post-operative ROM was 0-136 degree (mean 122degree), and the mean alignment was 2degree varus (0- 7degree varus). The HSS score increased from 72(61-82) to 92(72-95). 93% of the postoperative scores were good or excellent. Interestingly, the distribution of femoral component sizes of these patients was XS 2%, Small 83%, Medium 15%, Large 0%, XL 0%; whereas tibial component size was AA 27%, A 55%, B 15%, C 3%, D 0%, E 0%, and F 0%. The optimal fitted match between tibial and femoral size was: tibia AA and A with XS and small femur, tibia B and C with medium femur. The estimated match was: tibia D and E with large femur, tibia F with XL femur. In contrast to the Oxford report, the sizes of these components are smaller and not in correlation with the height, weight and BMI of the patients. We conclude that MI-UKA is an effective method for treating medial compartmental osteoarthritis of the knee in the Chinese population. CAIG is a feasibly intraoperative measure to predict femoral component sizes. However, component sizes and combinations are different from the Oxford guideline.