header advert
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 163 - 167
1 Feb 2006
Kalteis T Handel M Bäthis H Perlick L Tingart M Grifka J

In a prospective randomised clinical study acetabular components were implanted either freehand (n = 30) or using CT-based (n = 30) or imageless navigation (n = 30). The position of the component was determined post-operatively on CT scans of the pelvis.

Following conventional freehand placement of the acetabular component, only 14 of the 30 were within the safe zone as defined by Lewinnek et al (40° inclination sd 10°; 15° anteversion sd 10°). After computer-assisted navigation 25 of 30 acetabular components (CT-based) and 28 of 30 components (imageless) were positioned within this limit (overall p < 0.001). No significant differences were observed between CT-based and imageless navigation (p = 0.23); both showed a significant reduction in variation of the position of the acetabular component compared with conventional freehand arthroplasty (p < 0.001). The duration of the operation was increased by eight minutes with imageless and by 17 minutes with CT-based navigation.

Imageless navigation proved as reliable as that using CT in positioning the acetabular component.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 682 - 687
1 Jul 2004
Bäthis H Perlick L Tingart M Lüring C Zurakowski D Grifka J

Restoration of neutral alignment of the leg is an important factor affecting the long-term results of total knee arthroplasty (TKA). Recent developments in computer-assisted surgery have focused on systems for improving TKA.

In a prospective study two groups of 80 patients undergoing TKA had operations using either a computer-assisted navigation system or a conventional technique. Alignment of the leg and the orientation of components were determined on post-operative long-leg coronal and lateral films.

The mechanical axis of the leg was significantly better in the computer-assisted group (96%, within ±3° varus/valgus) compared with the conventional group (78%, within ±3° varus/valgus). The coronal alignment of the femoral component was also more accurate in the computer-assisted group.

Computer-assisted TKA gives a better correction of alignment of the leg and orientation of the components compared with the conventional technique. Potential benefits in the long-term outcome and functional improvement require further investigation.