header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 45 - 45
1 Nov 2018
Barlow C Dominguez E Dixon G Crouch-Smith H Wallace R Simpson H Al-Hourani K
Full Access

Femoral shaft fractures are potentially devastating injuries. Despite this, clinical studies of the biomechanics of this injury are lacking. We aimed to clinically evaluate bone behaviour under high and low energy trauma in paediatric, adult and older patients. Single-centre retrospective study identifying all diaphyseal femoral fractures between Feb 2015-Feb 2017. Peri-prosthetic and pathological fractures were excluded. Patients were subdivided into groups 1 (paediatric, <16yo), 2 (adult, 17–55yo) and 3 (older, >55yo) to reflect immature, peak bone age and osteoporotic bone respectively. Chi-Squared analysis assessed significance of bone age to degree of comminution and fracture pattern. A p-value <0.05 was significant. A total 4130 radiographs were analysed with 206 femoral shaft fractures identified. Forty-three patients were excluded with 163 remaining. Group 1, 2 and 3 included 38, 37 and 88 patients respectively. Mean age 50.8 (SD 32.8) with male-to-female ratio of 1:1.2. Groups 1 and 3 included majority simple fractures (35/38 and 62/88 respectively). Group 2 included more comminuted injuries (33/37). Bone age to degree of comminution proved significant (p<0.05) with a bimodal distribution of simple fractures noted in groups 1 and 3. Energy to fracture was significant in group 2, where a high energy injury was associated with comminution (p<0.05). This study is the first to demonstrate an association between fracture comminution and age. Simple femoral shaft fractures showed a bimodal age distribution in paediatric and older patients regardless of mechanism energy. High energy mechanism trauma was directly related to fracture comminution at peak bone age.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 41 - 41
1 Mar 2013
Mahmood W Smith H Mukherjee A McGonnell I
Full Access

TGF-beta signaling has a well established role not only in adult organ homeostasis but also in skeletal development. Follistatin-like 3 (FSTL3), related to follistatin, is an inhibitor of TGF-beta ligands, with an established role in glucose and fat metabolism. However it has not previously been studied in skeletal development. Using a FSTL3 knock-out (KO) mouse model we have studied both embryonic skeletal development and adult bone phenotypes. Staining for skeletal and cartilage markers during development shows acceleration of skeletal tissue differentiation, with an eventual normalization at E18.5 (which is just prior to birth). Acceleration of bone mineralization occurs during both endochondral and intramembranous ossification. Use of micro-CT imaging highlighted the development of a scoliosis in the KO animals, along with abnormal shape of cranium and cranial sutures. Further investigation of the cranial phenotype in adult KO mice reveals craniosynastosis, with atypical fusion of the frontal suture. These mice have a change in overall cranial shape with shortening of the anterior head and a compensatory expansion of the posterior cranial bones, in a similar fashion to brachyencephaly. Our study therefore highlights a significant role of FSTL3 in skeletal tissue development and mineralization, as well as the development of clinically significant skeletal developmental disorders such as scoliosis, craniosynastosis and brachyencephaly.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 41 - 41
1 May 2012
Metcalfe A Stewart C Postans N Dodds A Smith H Holt C Roberts A
Full Access

Introduction

Patients with knee osteoarthritis (OA) often tell us that they put extra load on the joints of the opposite leg as they walk. Multiple joint OA is common and has previously been related to gait changes due to hip OA (Shakoor et al 2002). The aim of this study was to determine whether patients with medial compartment knee OA have abnormal biomechanics of the unaffected knee and both hips during normal level gait.

Methods

Twenty patients (11 male, 9 female), with severe medial compartment knee OA and no other joint pain were recruited. The control group comprised 20 adults without musculoskeletal pain. Patients were reviewed, x-rays were examined and WOMAC and Oxford knee scores were completed. A 12 camera Vicon (Vicon, Oxford) system was used to collect kinematic data (100Hz) on level walking and the ground reaction force was recorded using three AMTI force plates (1000Hz). Surface electrodes were placed over medial and lateral quadriceps and hamstrings bilaterally to record EMG data (1000Hz). Kinematics and kinetics were calculated using the Vicon ‘plug-in-gait’ model. A co-contraction index was calculated for the EMG signals on each side of the knee, representing the magnitude of the combined readings relative to their maximum contraction during the gait cycle. Statistical comparisons were performed using t-tests with Bonferroni's correction for two variables and ANOVA for more than two variables (SPSS v16).