header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_8 | Pages 8 - 8
1 May 2021
Yapp LZ Walmsley PJ Moran M Clarke JV Simpson AHRW Scott CEH
Full Access

The aim of this study was to measure the effect of hospital case-volume on the survival of revision total knee arthroplasty (RTKA).

A retrospective analysis of Scottish Arthroplasty Project data was performed. The primary outcome was RTKA survival at ten years. The primary explanatory variable was annual hospital case-volume. Kaplan-Meier survival curves were plotted with 95% confidence intervals (CI) to determine the lifespan of RTKA. Multivariable Cox proportional hazards were used to estimate relative revision risks over time.

From 1998 to 2019, 8894 patients underwent RTKA surgery in Scotland (median age 70 years, median follow-up 6.2 years, 4789 (53.5%) females; 718 (8.8%) for infection). Of these patients, 957 (10.8%) underwent a second revision procedure on their knee. Male sex, younger age at index revision, and positive infection status were associated with need for re-revision. The ten-year survival estimate for RTKA was 87.3% (95%CI 86.5–88.1). Adjusting for gender, age, surgeon volume and infection status, increasing hospital case-volume was significantly associated with lower risk of re-revision (Hazard Ratio 0.78 (0.64–0.94, p<0.001)). The risk of re-revision steadily declined in centres performing >20 cases per year: relative risk reduction 16% with >20 cases; 22% with >30 cases; and 28% with >40 cases.

The majority of RTKA in Scotland survive up to ten years. Increasing yearly hospital case-volume above 20 cases is independently associated with a significant risk reduction of re-revision. Development of high-volume tertiary centres may lead to an improvement in the overall survival of RTKA.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_8 | Pages 9 - 9
1 May 2021
Nicholson JA Oliver WM Perks F Macgillivray T Robinson CM Simpson AHRW
Full Access

Sonographic callus may enable assessment of fracture healing. The aim of this study was to establish a reliable method for three-dimensional reconstruction of sonographic callus.

Patients that underwent non-operative management of displaced midshaft clavicle fractures and intramedullary nailing of tibia fractures were prospectively recruited and followed to union. Ultrasound scanning was performed at periodical time points following injury. Infra-red tracking technology was used to map each image to a three-dimensional lattice. Criteria was fist established for two-dimensional bridging callus detection in a pilot study. Using echo intensity of the ultrasound image, semi-automated mapping was used to create an anatomic three-dimensional representation of fracture healing. Agreement on the presence of sonographic bridging callus was assessed using the kappa coefficient and intra-class-correlation (ICC) between observers.

112 clavicle fractures and 10 tibia fractures completed follow-up at six months. Sonographic bridging callus was detected in 62.5% (n=70/112) of the clavicles at six weeks post-injury. If present, union occurred in 98.6% of the fractures (n=69/70). If absent, nonunion developed in 40.5% of cases (n=17/42)(73.4%-sensitive and 100%-specific to predict union). Out of 10 tibia fractures, 7 had bridging callus of at least one cortex at 6 weeks and when present all united. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8%-sensitive and 100%-specific to predict union). The ICC for sonographic callus between four reviewers was 0.82 (95% CI 0.68–0.91)

Three-dimensional ultrasound reconstruction of bridging callus has the potential to identify impaired fracture healing at an early stage in fracture management.