header advert
Results 1 - 4 of 4
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 23 - 23
1 Mar 2021
Schopper C Zderic I Menze J Muller D Rocci M Knobe M Shoda E Richards G Gueorguiev B Stoffel K
Full Access

Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148).

From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 82 - 82
1 Dec 2020
Zderic I Breceda A Schopper C Schader J Gehweiler D Richards G Gueorguiev B Sands A
Full Access

It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this biomechanical cadaveric study was to investigate short versus long Trochanteric Femoral Nail Advanced (TFNA) fixation in terms of construct stability and generation of secondary fracture pattern following trochanteric fracture consolidation.

Eight intact human cadaveric femur pairs were assigned to 2 groups of 8 specimens each for nailing using either short or long TFNA with blade as head element. Each specimen was first biomechanically preloaded at 1 Hz over 2000 cycles in superimposed synchronous axial compression to 1800 N and internal rotation to 11.5 Nm. Following, internal rotation to failure was applied over an arc of 90° within 1 second under 700 N axial load. Torsional stiffness, torque at failure, angle at failure and energy at failure were evaluated. Fracture patterns were analyzed.

Outcomes in the groups with short and long nails were 9.7±2.4 Nm/° and 10.2±2.9 Nm/° for torsional stiffness, 119.8±37.2 Nm and 128.5±46.7 Nm for torque at failure, 13.5±3.5° and 13.4±2.6° for angle at failure, and 887.5±416.9 Nm° and 928.3±461.0 Nm° for energy at failure, respectively, with no significant differences between them, P≥0.167. Fractures through the distal locking screw occurred in 5 and 6 femora instrumented with short and long nails, respectively. Fractures through the lateral entry site of the head element were detected in 3 specimens within each group. For short nails, fractures through the distal shaft region, not interfacing with the implant, were detected in 3 specimens.

From biomechanical perspective, the risk of secondary peri-implant fracture after intramedullary nailed trochanteric fracture consolidation is similar when using short or long TFNA. Moreover, for both nail versions the fracture pattern does not unexceptionally involve the distal locking screw.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 75 - 75
1 Dec 2020
Burkhard B Schopper C Ciric D Mischler D Gueorguiev B Varga P
Full Access

Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the humeral head is the most frequent mechanical failure mode, with rates up to 23%. Besides other known risk factors, such as non-anatomical reduction and lack of medial cortical support, in-adverse intraoperative perforation of the articular surfaces during pilot hole drilling (overdrilling) may increase the risk of secondary screw perforation. Overdrilling often occurs during surgical treatment of osteoporotic PHF due to minimal tactile feedback; however, the awareness in the surgical community is low and the consequences on the fixation stability have remained unproved. Therefore, the aim of this study was to evaluate biomechanically whether overdrilling would increase the risk of cyclic screw perforation failure in unstable PHF.

A highly unstable malreduced 3-part fracture was simulated by osteotomizing 9 pairs of fresh-frozen human cadaveric proximal humeri from elderly donors (73.7 ± 13.0 ys, f/m: 3/6). The fragments were fixed with a locking plate (PHILOS, DePuy Synthes, Switzerland) using six proximal screws, with their lengths selected to ensure 6 mm tip-to-joint distance. The pairs were randomized into two treatment groups, one with all pilot holes accurately predrilled (APD) and another one with the boreholes of the two calcar screws overdrilled (COD). The constructs were tested under progressively increasing cyclic loading to failure at 4 Hz using a previously developed setup and protocol. Starting from 50 N, the peak load was increased by 0.05 N/cycle. The event of initial screw loosening was defined by the abrupt increase of the displacement at valley load, following its initial linear behavior. Perforation failure was defined by the first screw penetrating the joint surface, touching the artificial glenoid component and stopping the test via electrical contact.

Bone mineral density (range: 63.8 – 196.2 mgHA/cm3) was not significantly different between the groups. Initial screw loosening occurred at a significantly lower number of cycles in the COD group (10,310 ± 3,575) compared to the APD group (12,409 ± 4,569), p = 0.006. Number of cycles to screw perforation was significantly lower for the COD versus APD specimens (20,173 ± 5,851 and 24,311 ± 6,318, respectively), p = 0.019. Failure mode was varus collapse combined with lateral-inferior translation of the humeral head. The first screw perforating the articular surface was one of the calcar screws in all but one specimen.

Besides risk factors such as fracture complexity and osteoporosis, inadequate surgical technique is a crucial contributor to high failure rates in locked plating of complex PHF. This study shows for the first time that overdrilling of pilot holes can significantly increase the risk of secondary screw perforation. Study limitations include the fracture model and loading method. While the findings require clinical corroboration, raising the awareness of the surgical community towards this largely neglected risk source, together with development of devices to avoid overdrilling, are expected to help improve the treatment outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 81 - 81
1 Dec 2020
Zderic I Schopper C Wagner D Gueorguiev B Rommens P Acklin Y
Full Access

Surgical treatment of fragility sacrum fractures with percutaneous sacroiliac (SI) screw fixation is associated with high failure rates in terms of screw loosening, cut-through and turn-out. The latter is a common cause for complications, being detected in up to 20% of the patients. The aim of this study was to develop a new screw-in-screw concept and prototype implant for fragility sacrum fracture fixation and test it biomechanically versus transsacral and SI screw fixations.

Twenty-seven artificial pelves with discontinued symphysis and a vertical osteotomy in zone 1 after Denis were assigned to three groups (n = 9) for implantation of their right sites with either an SI screw, the new screw-in-screw implant, or a transsacral screw. All specimens were biomechanically tested to failure in upright position with the right ilium constrained. Validated setup and test protocol were used for complex axial and torsional loading, applied through the S1 vertebral body. Interfragmentary movements were captured via optical motion tracking. Screw motions in the bone were evaluated by means of triggered anteroposterior X-rays.

Interfragmentary movements and implant motions in terms of pull-out, cut-through, tilt, and turn-out were significantly higher for SI screw fixation compared to both transsacral screw and screw-in-screw fixations. In addition, transsacral screw and screw-in-screw fixations revealed similar construct stability. Moreover, screw-in-screw fixation successfully prevented turn-out of the implant, that remained at 0° rotation around the nominal screw axis unexceptionally during testing.

From biomechanical perspective, fragility sacrum fracture fixation with the new screw-in-screw implant prototype provides higher stability than with the use of one SI screw, being able to successfully prevent turn-out. Moreover, it combines the higher stability of transsacral screw fixation with the less risky operational procedure of SI screw fixation and can be considered as their alternative treatment option.