header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1512 - 1519
1 Dec 2019
Klug A Konrad F Gramlich Y Hoffmann R Schmidt-Horlohé K

Aims

The aim of this study was to evaluate the outcome of Monteggia-like lesions at midterm follow-up and to determine whether the surgical treatment of the radial head influences the clinical and radiological results.

Patients and Methods

A total of 78 patients with a Monteggia-like lesion, including 44 women and 34 men with a mean age of 54.7 years (19 to 80), were available for assessment after a mean 4.6 years (2 to 9.2). The outcome was assessed using the Mayo Elbow Performance Score (MEPS), Oxford Elbow Score (OES), Mayo Modified Wrist Score (MMWS), and The Disabilities of the Arm, Shoulder and Hand (DASH) score. Radiographs were analyzed for all patients. A total of 12 Mason type I, 16 type II, and 36 type III fractures were included. Surgical treatment consisted of screw fixation for all type II and reconstructable type III fractures, while radial head arthroplasty (RHA) or excision was performed if reconstruction was not possible.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration.

Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.