header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 84 - 84
1 Nov 2018
Shastri VP Sarem M
Full Access

Mesenchymal stem cells (MSCs) have been long studied for their role in skeletal development. MSCs are unique in adult physiology in that they exhibit pluripotency and differentiate into cells that can evolve into various skeletal tissue as a result have been extensively employed as a viable alternative to terminally differentiated cells in engineering of cartilage and bone tissue ex vivo and in vivo. In spite of decades of effort in this direction, our understanding of what drives MSC fate choices is rather narrow in that it places heavy emphasis on a role for morphogens and cytokines (TGF-beta super family, FGF-2). In recent years it has become evident that MSCs also play an important role in wound healing, immunomodulation (immune suppression) and in tumour progression. However, what becomes of an MSC when it arrives at or exits an environment is less understood. We hypothesize that activation of differentiation programs in MSCs have an autocrine and paracrine component involving interplay between MSC-MSC (cell-cell contact) and MSC-(environment), and in this signalling paradigm the biophysical aspects of their microenvironment play a dominant role. We have tested this premise in several aspects of MSC behaviour (proliferation, migration, differentiation, chondrogenesis) and have gathered compelling evidence for biophysics and mechanobiology in MSC fate decisions. This talk will present some of our latest findings in this broad arena.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 109 - 109
1 Nov 2018
Sarem M Heizmann M Barbero A Martin I Shastri VP
Full Access

Bone formation proceeds through two distinct processes. One involves the deposition of bone by osteoblasts (intramembranous ossification) and another through the remodeling of an intermediate cartilaginous matrix formed by chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs) aggregates – a process called endochondral ossification (EO). EO is responsible for formation of long bones during development and most prevalent during facture repair upon callus formation. In adult bone injuries MSCs from periosteum form bone via EO whereas MSCs from bone marrow are primarily differentiate to osteoblast in vivo. We hypothesized that the unique biophysical and biochemical properties of bone mineral phase has a role in programming MSCs. Using a biomimetic bone like apatite (BBHAp) as surrogate for bone mineral phase, we studied the chondrogenic differentiation of human marrow derived MSCs and observed that the BBHAp dictates MSCs fate and strictly dictates the pathway of bone formation in vivo. Through exhaustive dissection of the signaling pathways at play, a prominent role of PTH1R in modulating the effects imposed by the BBHAp has been unraveled. These fundamental insights gained in how bone microenvironment might alter fate of MSCs has important implications for bone repair and regeneration therapies.