header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 87 - 87
1 Dec 2020
Frost MW Rytoft LA Shen M LI Y Zhekov SS Ghaffari A Kr⊘yer BK Pedersen GF Rahbek O Kold S
Full Access

In 2019, Lin et al. published a proof-of-concept study of electrical impedance spectroscopy as a simple and low-cost method to characterize progression of fracture repair (Lin et al., Sci Rep 2019). However, the electrical impedance sensors were placed in the fracture site which may impair the transfer to clinical use. To further explore the concept of monitoring fracture healing by electrical impedance spectroscopy, we established a tibial fracture model in the rabbit where sensors are positioned in proximity to the fracture site but without being placed in the fracture site. The aim of this pilot study was to explore whether distinct patterns of electrical impedance would evolve as tibial fractures in rabbits were evaluated until radiographic signs of healing.

Approval was granted from the Inspectorate of the Animal Experimentation under the Danish Ministry of Justice. Four rabbits were anaesthetized, and in each rabbit a tibial osteotomy was made and stabilized by an external fixator. Electrical impedance was measured immediately postoperative and hereafter daily until euthanization after 3 weeks. Recordings were obtained within a wide frequency range (10 Hz to 1 MHz) from an inner electrode placed into the medullary canal and an outer electrode placed extracortical on the lateral with a distance of 3 mm to the defect.

A similar pattern of electrical impedance over time was observed in the four rabbits. During the very early stages of fracture healing, an initial fluctuation in electrical impedance occurred. However, after 10 days the curves revealed a steady daily increase in electrical impedance. The first radiological signs of bone healing were detected after 14 days and progressed in all four rabbits in accordance with increments in the electrical impedance until termination of the pilot study after 21 days.

Consistent electrical impedance patterns were detected during bone healing in a pilot study of four rabbits. Further research is needed to explore whether the presented method of electrical impedance measurements can be used to monitor bone healing over time.