header advert
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 501 - 507
1 May 2024
Galloway AM Keene DJ Anderson A Holton C Redmond AC Siddle HJ Richards S Perry DC

Aims

The aim of this study was to produce clinical consensus recommendations about the non-surgical treatment of children with Perthes’ disease. The recommendations are intended to support clinical practice in a condition for which there is no robust evidence to guide optimal care.

Methods

A two-round, modified Delphi study was conducted online. An advisory group of children’s orthopaedic specialists consisting of physiotherapists, surgeons, and clinical nurse specialists designed a survey. In the first round, participants also had the opportunity to suggest new statements. The survey included statements related to ‘Exercises’, ‘Physical activity’, ‘Education/information sharing’, ‘Input from other services’, and ‘Monitoring assessments’. The survey was shared with clinicians who regularly treat children with Perthes’ disease in the UK using clinically relevant specialist groups and social media. A predetermined threshold of ≥ 75% for consensus was used for recommendation, with a threshold of between 70% and 75% being considered as ‘points to consider’.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 735 - 741
2 Oct 2023
Galloway AM Pini S Holton C Perry DC Redmond A Siddle HJ Richards S

Aims

Perthes’ disease is an idiopathic avascular necrosis of the developing femoral head, often causing deformity that impairs physical function. Current treatments aim to optimize the joint reaction force across the hip by enhancing congruency between the acetabulum and femoral head. Despite a century of research, there is no consensus regarding the optimal treatment. The aim of this study was to describe the experiences of children, their families, and clinicians when considering the treatment of Perthes’ disease.

Methods

A qualitative study gathered information from children and their families affected by Perthes’ disease, along with treating clinicians. Interviews followed a coding framework, with the interview schedule informed by behavioural theory and patient and public involvement. Transcripts were analyzed using the framework method.


Bone & Joint Open
Vol. 1, Issue 12 | Pages 720 - 730
1 Dec 2020
Galloway AM van-Hille T Perry DC Holton C Mason L Richards S Siddle HJ Comer C

Aims

Perthes’ disease is a condition leading to necrosis of the femoral head. It is most common in children aged four to nine years, affecting around one per 1,200 children in the UK. Management typically includes non-surgical treatment options, such as physiotherapy with/without surgical intervention. However, there is significant variation in care with no consensus on the most effective treatment option.

Methods

This systematic review aims to evaluate the effectiveness of non-surgical interventions for the treatment of Perthes’ disease. Comparative studies (experimental or observational) of any non-surgical intervention compared directly with any alternative intervention (surgical, non-surgical or no intervention) were identified from: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMcare, Allied and Complementary Medicine Database (AMED), and the Physiotherapy Evidence Database (PEDro). Data were extracted on interventions compared and methodological quality. For post-intervention primary outcome of radiological scores (Stulberg and/or Mose), event rates for poor scores were calculated with significance values. Secondary outcomes included functional measures, such as range of movement, and patient-reported outcomes such as health-related quality of life.


Bone & Joint Open
Vol. 1, Issue 11 | Pages 691 - 695
1 Nov 2020
Galloway AM Holton C Parnami V Wood M Craven J Green N Siddle HJ Richards S Comer C

Aims

Perthes’ disease is a condition which leads to necrosis of the femoral head. It is most commonly reported in children aged four to nine years, with recent statistics suggesting it affects around five per 100,000 children in the UK. Current treatment for the condition aims to maintain the best possible environment for the disease process to run its natural course. Management typically includes physiotherapy with or without surgical intervention. Physiotherapy intervention often will include strengthening/stretching programmes, exercise/activity advice, and, in some centres, will include intervention, such as hydrotherapy. There is significant variation in care with no consensus on which treatment option is best. The importance of work in this area has been demonstrated by the British Society for Children’s Orthopaedic Surgery through the James Lind Alliance’s prioritization of work to determine/identify surgical versus non-surgical management of Perthes’ disease. It was identified as the fourth-highest priority for paediatric lower limb surgery research in 2018.

Methods

Five UK NHS centres, including those from the NEWS (North, East, West and South Yorkshire) orthopaedic group, contributed to this case review, with each entre providing clinical data from a minimum of five children. Information regarding both orthopaedic and physiotherapeutic management over a two-year post-diagnosis period was reviewed.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 6 - 6
1 Jan 2003
Richards S McDermott I Hallam P Tavares S Lavelle J Amis A
Full Access

Studies comparing the biomechanical properties of different meniscal repair systems are limited, and most have simply investigated load to failure. Meniscal tissue is highly anisotropic, and far weaker under tension in the radial direction. Loading to failure using high radially orientated loads may, therefore, not be the most physiologically relevant in-vitro test for repair of circumferential tears, and determining increases in gapping across repair sites under cyclical loading at lower loads may be of greater importance. This study aimed to determine the load to failure for 4 different meniscal repair techniques, and to assess gapping across repairs under cyclical loading.

Bovine menisci were divided vertically, 5mm from the peripheral edge to simulate a circumferential tear, and then repaired using 1 of 4 techniques: vertical loop sutures using 2-0 PDS, bioabsorbable Meniscal Arrows (Atlantech), T-Fix Suture Bars (Acufex) or Meniscal Fasteners (Mitek). 9 specimens were tested in each group using an Instron 5565 materials testing machine with Merlin control software to determine load to failure. A further 9 specimens in each group were tested by cyclical loading between 5N and 10N at 20mm/min for 25 cycles. Gapping across the repairs under cyclical loading was measured using a digital micrometer and a Differential Voltage Reluctance Transducer.

The peak load to failure values for each repair method did not appear to fit a Gaussian distribution, but were skewed to the left due to some samples failing at lower loads than the main cluster. Results were analysed using the Kruskal-Wallis test, with Dunn’s multiple comparison post test. The results for gapping across the repairs from the cyclical testing all appeared to fit the Gaussian distribution, and these were analysed by Analysis of Variance, with Tukey’s multiple comparison post test. All analysis was performed using Prism (Graph-pad) Software.

The mean loads to failure for each of the repair groups were: Sutures 72.7 N, T-Fix 49.1 N, Fasteners 40.8 N, and Arrows 34.2 N. The load to failure was significantly greater with the Suture group compared to the Arrows (p< 0.01) or the Fasteners (p< 0.05). The mean gapping across the repairs for each of the repair groups after 25 loading cycles were: Sutures 3.29mm, Arrows 2.18mm,Fasteners 3.99mm,andT-Fix 3.47mm.The mean gapping was significantly less for the Arrows compared to the Sutures (p< 0.05), the Fasteners (p< 0.01), or the T-Fix (p< 0.05).

The results confirm that meniscal repair by suturing gives the highest load to failure, but show that Arrows give superior hold under lower loads, with the least gapping across repairs under cyclical loading by this testing protocol.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 319 - 319
1 Nov 2002
McDermott ID Richards S Hallam P Tavares S Lavelle JR Amis AA
Full Access

Aims: To determine load to failure for four different meniscal repair techniques, and to assess gapping across repairs under cyclical loading.

Background: Studies comparing the biomechanical properties of different meniscal repair systems are limited, and most have simply investigated load to failure. Meniscal tissue is highly anisotropic, and far weaker under tension in the radial direction. Load to failure using high loads may, therefore, not be the most physiologically relevant in-vitro test for repair of circumferential tears, and measuring increases in gapping across repair sites under cyclical loading at lower loads may be of greater importance.

Methods: Bovine menisci were divided vertically, 5mm from the peripheral edge to simulate a circumferential tear, and then repaired using one to four techniques: vertical loop sutures using 1 -PDS, bioabsorbable Meniscal Arrows (Atlantech), Meniscal Fasteners (Mitek) or T-Fix Suture Bars (Acufex). Nine specimens were tested in each group using an Instron 5500 materials testing machine to determine load to failure. A further nine specimens in each group were tested by cyclic loading between 5N and 10N at 20mm/min for 25 cycles, using a digital micrometer to measure initial gapping, and a Differential Variable Reluctance Transducer to measure the progressive increase in gapping across the repair site during the cyclical loading. Data was analysed by ANOVA and Tukey’s multiple comparison post test using Prism (GraphPad) software.

Results: The mean loads to failure (with s.d.) in Newtons were: Sutures 72.7 (22.0), Arrows 34.2 (15.4), Fasteners 40.8 (13.4), and T-Fix 49.1 (13.8). The load to failure was significantly greater with the Sutures compared to the Arrows (p< 0.001), the Fasteners (p< 0.001) or the T-Fix (p< 0.05).

The mean gapping across the repairs after 25 load cycles (with s.d.) in millimetres was: Sutures 3.3 (1.0), Arrows 2.2 (0.9), Fasteners 4.0 (0.6) and TFix 3.5 (0.7). The mean gapping was significantly less for the Arrows compared to the Sutures (p< 0.05), the Fasteners (p< 0.01), or the T-Fix (p< 0.05).

Conclusions: These results confirm that meniscal repair by suturing gives the highest load to failure, but show that Arrows give superior hold with the least increase in gapping across a repair under cyclical loading by this test protocol.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 143 - 144
1 Jul 2002
Taylor H Richards S Khan N McGregor A Alaghband-Zadeh J Hughes S
Full Access

Aim of Study: The aim of the study was to investigate the effect of muscle retractors on intramuscular pressure in the posterior spinal muscles during posterior spinal surgery.

Methods: Twenty patients undergoing posterior spinal surgery were recruited into this study and recordings of intramuscular pressure during surgery were performed using a Stryker® compartment pressure monitoring system, prior to insertion of retractors, 5, 30 and 60 minutes into surgery and on removal of retractors. Prior to and following use of the retractors, muscle biopsies were taken from the erector spinae muscle for analysis.

Results: A significant increase in intramuscular pressure (p< 0.001) was observed during surgery, with pressure rising from 7.1±4.1 mmHg pre-operatively to 26.4±16.0 mmHg 30 minutes into the operation. On removal of retractors, this pressure returned to or near to the original value. Analysis of muscle biopsies using calcium-activated ATPase birefringence revealed a reduction in muscle function following prolonged use of self-retaining retractors.

Discussion: This study demonstrates a substantial rise in pressure in the erector spinae muscle during posterior spinal surgery. Following retraction, marked changes were noted in the function of the muscles. This could be an important factor in the generation of operative scar tissue and post-operative dysfunction of the spinal muscles, and therefore, may be a cause of persistent back pain frequently observed in post-operative patients. Currently, this work is being extended to investigate the relationship between loss of muscle function and duration of retraction, and to study the long term implications of loss of muscle function with respect to surgical outcome and chronic back pain.