header advert
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 11 - 11
1 Jan 2004
Hing K Damien E McInness T Revell P
Full Access

The use of porous ceramics as bone graft substitutes (BGS) has been under consideration for over 30 years [1]. In particular calcium phosphates such as hydroxyapatite (HA) have been promoted as a result of their osteoconductive properties, i.e. that they stimulate bone apposition within their macroporous structures.

It is well established that both pore size [1] and pore connectivity [2] are critical morphological elements for a successful BGS. Thus biologically ‘optimal’ structures, with relatively large levels of porosity (> 70%) are consequently low in mechanical strength, with typical UCS values of between 1–8 MPa depending on the precise level of porosity and the pore size distribution. The aim of this investigation was to study the biological response to a porous HA with a relatively low level of macro-porosity (64%), but which possessed a highly interconnected micro-pore structure within the HA struts.

Phase pure porous HA implants were manufactured using a novel technique [3] with a mean macro-pore size of 230 ìm and a mean pore interconnection size of 110 μm. Cylindrical specimens 4.5 mm in diameter were implanted in the distal femur of 6 month New Zealand White rabbits and retrieved for histological and histomorphometric analysis at 4 weeks. The mineral apposition rate (MAR) was determined through the administration of fluorochrome labels at 1, 2 and 3 weeks.

After 4 weeks new bone had penetrated deep within the macro-pore structure and at high magnification osteocyte-like cells were observed occupying micro-pores within the ceramic struts. Furthermore, there was a significant increase in the MAR of bone formed within and surrounding the PHA (5.21 ìm.day-1, 4.42 ìm.day-1) as compared to the normal turnover rate of control bone (2.07 ìm.day-1, 2.09 ìm.day-1) during weeks 1-2 and 2–3, respectively.

The micro-porous network within the scaffold struts clearly influenced the host response. This could be linked to an associated increase in roughness or surface area, or it may reflect the greater level of strut permeability underlining the importance of nutrient transfer and the promotion of angiogenesis in scaffolds for bone repair.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 23 - 24
1 Jan 2003
Calder J Buttery L Pearse M Revell P Polak J
Full Access

To investigate the underlying mechanism of osteocyte death in osteonecrosis of the femoral head (ONFH).

Although there are a plethora of conditions that predispose to ONFH the underlying mechanism that results in the death of osteocytes is poorly understood. Consequently, treatment for early disease has a variable outcome. Recent investigation has focussed on the role of nitric oxide (NO) in the local control of bone turnover. NO is central to bone cell metabolism and has been implicated in the development of apoptosis.

Bone samples were harvested from the femoral heads of 40 patients undergoing total hip arthroplasty – 20 for advanced ONFH and 20 for osteoarthritis (control group). Immunocytochemical techniques were used to demonstrate evidence of NO synthase (iNOS and eNOS) as a marker of NO production and for evidence of apoptosis.

There was a marked increase in the expression of both eNOS and iNOS in the bone marrow and osteocytes from patients with ONFH secondary to steroids and alcohol with a correspondingly high proportion of apoptotic cells. Very little evidence of either eNOS or iNOS could be demonstrated in the control group and no significant apoptosis could be demonstrated. Samples from patients with ONFH secondary to sickle cell disease likewise had little evidence of apoptosis and a less marked increase iNOS production.

Our findings suggest that sickle cell disease may cause infarction of bone which subsequently leads to osteonecrosis. However, steroids and alcohol, or their metabolites, may have a direct cytotoxic effect upon bone leading to an increased NO production and NO-mediated apoptosis rather than necrosis. Our findings may provide important clues as to the underlying pathway leading osteocyte death. Therapeutic measures aimed at preventing production of toxic levels of NO or by blocking specific pathways in apoptosis may provide effective an treatment during the early stages of ONFH by halting disease progression.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 1 | Pages 25 - 28
1 Jan 1991
Lalor P Revell P Gray A Wright S Railton G Freeman M

Tissues from five patients who underwent revision operations for failed total hip replacements were found to contain large quantities of particulate titanium. In four cases this metal must have come from titanium alloy screws used to fix the acetabular component; in the fifth case it may also have originated from a titanium alloy femoral head. Monoclonal antibody labelling showed abundant macrophages and T-lymphocytes, in the absence of B-lymphocytes, suggesting sensitisation to titanium. Skin patch testing with dilute solutions of titanium salts gave negative results in all five patients. However, two of them had a positive skin test to a titanium-containing ointment.


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 3 | Pages 367 - 372
1 May 1988
Samuelson K Freeman M Levack B Rassmussen G Revell P

Thirty-seven patients with extensive acetabular defects due to loose implants had revisions with uncemented components, the acetabulum being augmented with homograft bone. In six of these, a histological study of graft incorporation was made. At a mean follow-up of 1.5 years 34 patients were free of pain and 35 could walk for 30 minutes or longer. No graft had obviously sequestrated. Two components had radiological evidence of migration but remain asymptomatic. We conclude that cementless revision surgery with homograft supplementation of the acetabulum is clinically successful in the short-term. The long-term outcome is unknown.


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 4 | Pages 558 - 564
1 Aug 1987
Weightman B Freeman M Revell P Braden M Albrektsson B Carlson L

Mechanical and biomechanical testing of a new bone cement suggests that improved load transfer to the proximal femur could be achieved with the combination of a cement having a lower modulus, a greater ductility and a lower creep resistance than polymethylmethacrylate and a suitably shaped femoral component.


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 4 | Pages 557 - 559
1 Aug 1984
Bolton-Maggs B Helal B Revell P

A case of bilateral avascular necrosis of the capitate is presented. A review of the literature has identified a clear-cut clinical syndrome. The aetiology and pathology of this syndrome is discussed and a new method of treatment is proposed.


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 4 | Pages 489 - 493
1 Aug 1982
Freeman M Bradley G Revell P

The occurrence of a radiolucent line at the interface of bone and cement in total joint prostheses is a frequently observed, although little understood, phenomenon. Because of an operative technique utilised in instances of bone loss, we have, within a single implant mass used in each of a series of 18 total knee replacements, been able to observe two separate interfaces, one between bone and cement and the other between bone and cobalt chrome. The average period of observation was 32 months. All of the knees except one demonstrated a lucency at the bone-cement interface; only one of the knees had a similar lucency at the bone-CoCr interface. One of the knees was studied histologically. In the light of the universal observation of macrophages at bone-cement interfaces and the recent finding that osteoclasts are derived from macrophages, these observations are significant in relation to the aetiology of bone-cement lucencies.


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 3 | Pages 326 - 335
1 Jun 1982
Blaha J Insler H Freeman M Revell P Todd R