header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 391 - 398
1 Jun 2017
Lenguerrand E Whitehouse MR Beswick AD Jones SA Porter ML Blom* AW

Objectives

We used the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (NJR) to investigate the risk of revision due to prosthetic joint infection (PJI) for patients undergoing primary and revision hip arthroplasty, the changes in risk over time, and the overall burden created by PJI.

Methods

We analysed revision total hip arthroplasties (THAs) performed due to a diagnosis of PJI and the linked index procedures recorded in the NJR between 2003 and 2014. The cohort analysed consisted of 623 253 index primary hip arthroplasties, 63 222 index revision hip arthroplasties and 7585 revision THAs performed due to a diagnosis of PJI. The prevalence, cumulative incidence functions and the burden of PJI (total procedures) were calculated. Overall linear trends were investigated with log-linear regression.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 746 - 754
1 Jun 2012
Jameson SS Baker PN Mason J Porter ML Deehan DJ Reed MR

Modern metal-on-metal hip resurfacing has been widely performed in the United Kingdom for over a decade. However, the literature reports conflicting views of the benefits: excellent medium- to long-term results with some brands in specific subgroups, but high failure rates and local soft-tissue reactions in others. The National Joint Registry for England and Wales (NJR) has collected data on all hip resurfacings performed since 2003. This retrospective cohort study recorded survival time to revision from a resurfacing procedure, exploring risk factors independently associated with failure. All patients with a primary diagnosis of osteoarthritis who underwent resurfacing between 2003 and 2010 were included in the analyses. Cox’s proportional hazard models were used to analyse the extent to which the risk of revision was related to patient, surgeon and implant covariates.

A total of 27 971 hip resurfacings were performed during the study period, of which 1003 (3.59%) underwent revision surgery. In the final adjusted model, we found that women were at greater risk of revision than men (hazard ratio (HR) = 1.30, p = 0.007), but the risk of revision was independent of age. Of the implant-specific predictors, five brands had a significantly greater risk of revision than the Birmingham Hip Resurfacing (BHR) (ASR: HR = 2.82, p < 0.001, Conserve: HR = 2.03, p < 0.001, Cormet: HR = 1.43, p = 0.001, Durom: HR = 1.67, p < 0.001, Recap: HR = 1.58, p = 0.007). Smaller femoral head components were also significantly more likely to require revision (≤ 44 mm: HR = 2.14, p < 0.001, 45 to 47 mm: HR = 1.48, p = 0.001) than medium or large heads, as were operations performed by low-volume surgeons (HR = 1.36, p <  0.001). Once these influences had been removed, in 4873 male patients < 60 years old undergoing resurfacing with a BHR, the five-year estimated risk of revision was 1.59%.

In summary, after adjustment for a range of covariates we found that there were significant differences in the rate of failure between brands and component sizes. Younger male patients had good five-year implant survival when the BHR was used.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 730 - 735
1 Jun 2007
Derbyshire B Porter ML

We performed a three-year radiostereometric analysis (RSA) study of the Elite Plus femoral component on 25 patients undergoing primary total hip replacement. Additional assessments and measurements from standard radiographs were also made.

Subsidence of the stem occurred at the cement-stem interface. At 36 months the subsidence of the stem centroid was a mean of 0.30 mm (0.02 to 1.28), and was continuing at a slow rate. At the same time point, internal rotation and posterior migration of the femoral head had ceased. One stem migrated excessively and additional assessments suggested that this was probably due to high patient demand.

The failure rate of 4% in our study is consistent with data from arthroplasty registers but contrasts with poor results from another RSA study, and from some clinical studies. We believe that the surgical technique, particularly the use of high-viscosity cement, may have been an important factor contributing to our results.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1141 - 1142
1 Sep 2006
Phillips SJ Chavan R Porter ML Kay PR Hodgkinson JP Purbach B Reddick AH Frayne JM

We carried out a retrospective case-control study in 80 patients who underwent a revision total hip replacement. Group A (40 patients) received tranexamic acid and intra-operative cell salvage. Group B (40 patients) was a matched control group and did not receive this management. Each group was divided into four subgroups: revision of both components, revision of both components with bone grafting, revision of the acetabular component with or without bone graft, and revision of the femoral component with or without bone graft.

In group A the total number of units transfused was 52, compared with 139 in group B, representing a reduction in blood usage of 62.5%. The mean amount of blood transfused from cell salvage in each group was 858 ml (113 to 2100), 477 ml (0 to 2680), 228 ml (75 to 315) and 464 ml (120 to 1125), respectively. There was a significant difference in the amount of blood returned between the groups (p < 0.0001).

In group A, 22 patients needed transfusion and in group B, 37 (p < 0.0001). A cost analysis calculation showed a total revenue saving of £70 000 and a potential saving throughout our facility of £318 288 per year.

Our results show that a significant reduction in blood transfusion can be made using combined cell salvage and tranexamic acid in revision surgery of the hip.