header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 105 - 105
1 Nov 2018
Manferdini C Paolella F Gabusi E Gambari L Fleury-Cappellesso S Barbero A Murphy M Lisignoli G
Full Access

Synovitis has been shown to play a role in pathophysiology of OA promoting cartilage destruction and pain. Synovium is mainly composed of synovial fibroblast (SF) and macrophage (SM) that guide synovial inflammation. Adipose stromal cells (ASC) promising candidate for cell therapy in OA are able to counteract inflammation. Two different subsets of macrophages have been described showing a pro-inflammatory (M1) and an anti-inflammatory (M2) phenotype. Macrophage markers: CD68, CD80 (M1-like) and CD206 (M2-like) were evaluated in osteoarthritic synovial tissue. GMP-clinical grade ASC were isolated from subcutaneous adipose tissue and M1-macrophages were differentiated from CD14+ obtained from peripheral blood of healthy donors. ASC were co-cultured in direct and indirect contact with activated (GM-CSF+IFNγ)-M1 macrophages for 48h. At the end of this co-culture we analyzed IL1β, TNFα, IL6, MIP1α/CCL3, S100A8, S100A9, IL10, CD163 and CD206 by qRT-PCR or immunoassay. PGE2 blocking experiments were performed. In moderate grade OA synovium we found similar percentages of CD80 and CD206. M1-activated macrophage factors IL1β, TNFα, IL6, MIP1α/CCL3, S100A8 and S100A9 were down-modulated both co-culture conditions. Moreover, ASC induced the typical M2 macrophage markers IL10, CD163 and CD206. Blocking experiments showed that TNFα, IL6, IL10, CD163 and CD206 were significantly modulated by PGE2. We confirmed the involvement of PGE2/COX2 also in CD14+ OA synovial macrophages. In conclusion we demonstrated that ASC are responsible for the switching of activated-M1-like to a M2-like anti-inflammatory phenotype, mainly through PGE2. This suggested a specific role of ASC as important determinants in therapeutic dampening of synovial inflammation in OA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 78 - 78
1 Nov 2018
Manferdini C Paolella F Gabusi E Cattini L Schrezenmeier H Lisignoli G
Full Access

Mesenchymal stromal cells (MSCs) are promising candidate for cell therapy in osteoarthritis (OA) patients since that they exert anti-inflammatory, immunomodulatory, anti-fibrotic and anti-hypertrophic effects in the joint tissues. However, little is known about the OA milieu factors that could enhance the migration and tissue specific engraftment of exogenously injected MSC for successful regenerative cell therapy. GMP-clinical grade adipose stromal cells (ASC) were evaluated both in normoxic and hypoxic (2%O2) conditions, with or without OA synovium milieu. We found that both OA synovial fluids and OA synoviocytes derived conditioned medium (CM) contain approximately the same amounts of different cytokines/chemokines (i.e. IL6, CXCL8, CXCL10, CXCL12, CCL2, CCL3, CCL4, CCL5, CCL11). ASC migration was significantly increased by both OA synovium milieu and not affected by normoxic or hypoxic condition. We identify that ASC migration was mainly influenced by different macrophage chemokines (i.e. CCL2, CCL3, CCL4). In hypoxic condition basal GMP-ASC showed an increase of CXCR3 and CCR3, a decrease of CCR1 and CCR5 receptors, while CXCR1, CXCR4, CXCR7, CCR2 and IL6R were not modulated. The addition of OA synovium milieu induced CCR3, CXCR3 and IL6R and decreased CCR1 and not affected CCR2, CCR5, CXCR1, CXCR4, CXCR7 in hypoxic condition. Our data demonstrated that GMP-ASC chemotaxis was mainly induced by macrophage chemokines. Moreover, we evidenced that hypoxia, as better condition to mimic the OA milieu, affected some GMP-ASC cytokine/chemokine receptors, suggesting the involvement of specific chemokine-receptor axis.