header advert
Results 1 - 1 of 1
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 217 - 223
1 Feb 2014
Namba RS Inacio MCS Cafri G

The outcome of total knee replacement (TKR) using components designed to increase the range of flexion is not fully understood. The short- to mid-term risk of aseptic revision in high flexion TKR was evaluated. The endpoint of the study was aseptic revision and the following variables were investigated: implant design (high flexion vs non-high flexion), the thickness of the tibial insert (≤ 14 mm vs > 14 mm), cruciate ligament (posterior stabilised (PS) vs cruciate retaining), mobility (fixed vs rotating), and the manufacturer (Zimmer, Smith & Nephew and DePuy). Covariates included patient, implant, surgeon and hospital factors. Marginal Cox proportional hazard models were used.

In a cohort of 64 000 TKRs, high flexion components were used in 8035 (12.5%). The high flexion knees with tibial liners of thickness > 14 mm had a density of revision of 1.45/100 years of observation, compared with 0.37/100 in non-high flexion TKR with liners ≤ 14 mm thick. Relative to a standard fixed PS TKR, the NexGen (Zimmer, Warsaw, Indiana) Gender Specific Female high flexion fixed PS TKR had an increased risk of revision (hazard ratio (HR) 2.27 (95% confidence interval (CI) 1.48 to 3.50)), an effect that was magnified when a thicker tibial insert was used (HR 8.10 (95% CI 4.41 to 14.89)).

Surgeons should be cautious when choosing high flexion TKRs, particularly when thicker tibial liners might be required.

Cite this article: Bone Joint J 2014;96-B:217–23.