header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 141 - 141
2 Jan 2024
Ruiz-Fernández C Eldjoudi D Gonzalez-Rodríguez M Barreal A Farrag Y Mobasheri A Pino J Sakai D Gualillo O
Full Access

Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration.

We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human annulus fibrosus (AF) and nucleus pulposus (NP) cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signaling of mCRP.

Our results indicate that the effect of mCRP is persistent and sustained, regardless of the proinflammatory environment, as it was similar in healthy and degenerative human primary AF cells. This is the first article that demonstrates the localization of mCRP in intravertebral disc cells of the AF and NP and that provides evidence for the functional activity of mCRP in healthy and degenerative human AF and NP disc cells.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims

CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration.

Methods

We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 63 - 63
1 Mar 2021
Mobasheri A
Full Access

Calcium is an important element for a wide range of physiological functions including muscle contraction, neuronal activity, exocytosis, blood coagulation and cell communication. In the musculoskeletal system calcium is crucial for the structural integrity of bones, teeth, intervertebral disc and articular cartilage. At the cellular level calcium acts as a second messenger. Calcium signalling uses intracellular calcium ions to drive intracellular communication and signal transduction processes. When calcium enters the cell it exerts allosteric regulatory effects on many enzymes and proteins. Examining the role of calcium in chondrocyte biology is important for understanding the role for this divalent ion in the metabolic modulation of chondrocyte function in health and disease. This includes the study of calcium transport systems such as channels, transporters and pumps involved in calcium homeostasis in chondrocytes and how existing pharmacological drugs act on these transport systems. L-type calcium channel blockers are drugs used as cardiac antiarrhythmics or antihypertensives, depending on whether the drugs have higher affinity for the heart (the phenylalkylamines, like verapamil), or for the blood vessels (the dihydropyridines, like nifedipine). L-type calcium channels are present in many musculoskeletal tissues including skeletal muscle, smooth muscle, bone and cartilage. L-type calcium channel inhibitors like nifedipine used for the treatment of some forms of hypertension modulate calcium-mediated events in chondrocytes under dynamic loading, thus affecting metabolism, osmotic responses and extracellular matrix turnover in cartilage. The aim of our work is to understand the impact of L-type calcium channel inhibitors used for the treatment of hypertension on chondrocytes and on the chondrogenic differentiation of bone marrow derived mesenchymal stem cells (MSCs). This knowledge will enhance our understanding of the development of osteoarthritis (OA) and may lead to new opportunities for chondroprotection and regenerative medicine for OA. We have used electrophysiology to demonstrate L-type calcium currents in chondrocytes immediately after pharmacological activation with the calcium channel opener Bay-K8644. We have also used immunohistochemistry to demonstrate expression of the a1C subunit Cav1.2 (CACNA1C) in human chondrocytes and MSCs. Inhibitors of L-type calcium channels such as nifedipine downregulate mitochondrial respiration and ATP production in MSCs but not in chondrocytes. Nifedipine inhibits proliferation of chondrocytes and enhances glycolytic capacity in chondrocytes, promoting glycolytic reserve in both MSCs and chondrocytes. Nifedipine can also stimulate chondrogenic differentiation in MSCs (with or without growth factors). Metabolic responses to nifedipine differs in mesenchymal stem cells and chondrocytes highlighting important metabolic differences between these cells. In summary, antihypertensive drugs such as nifedipine can affect the biological function of chondrocytes and MSCs and may modulate the course of OA progression and impact on cartilage repair.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 84 - 84
1 Mar 2021
Mobasheri A
Full Access

Sarcopenia is a progressive and generalized skeletal muscle disorder that involves loss of muscle mass and function. It is associated with increased adverse outcomes including falls, functional decline, frailty and mortality and affects 65% of people over the age of 65 more than half of people aged 80 and above. The factors that cause and worsen sarcopenia are categorised into two groups. The primary aetiological factor is ageing and the secondary factors include disease, physical inactivity, and poor nutrition. Sarcopenia is considered to be ‘primary' (or age-related) when no other specific cause is evident. However, a number of ‘secondary' factors may be present in addition to ageing. Sarcopenia can occur secondary to a systemic or inflammatory disease, including malignancy and organ failure. Physical inactivity is one of the major contributors to the development of sarcopenia, whether due to a sedentary lifestyle or to disease related immobility or disability. Furthermore, sarcopenia can develop as a result of inadequate protein consumption. Biomarkers are objective and quantifiable characteristics of physiological and pathophysiological processes. Biomarkers can be used to predict the development of sarcopenia in older susceptible adults and enable early interventions that can reduce the risk of physical disability, the co-morbidities associated with the loss of muscle mass and the poor health outcomes that result from sarcopenia. Non-invasive imaging technologies can be used as biomarkers to detect loss of skeletal muscle mass in sarcopenia include bone densitometry, computed tomography, ultrasound and magnetic resonance imaging. However, imaging requires sophisticated and expensive equipment that is not available in a resource poor setting. Therefore, markers of skeletal muscle strength and fitness and soluble biochemical markers in blood may be used as alternative biomarkers. Studies on sarcopenia have identified numerous soluble biochemical biomarkers. These biomarkers can be divided into two groups: “muscle-specific” and “non-muscle-specific” biomarkers. Since sarcopenia is associated with rapid skeletal muscle wasting, the skeletal muscle-specific isoform of troponin T may be considerate a useful biomarker of sarcopenia, since high troponin levels in blood are an expression of muscle wasting. Peptides derived from collagen type VI turnover may be potential biomarkers of sarcopenia. We have recently conducted a systematic review to summarize the data from recent mass-spectrometry based proteomic studies of the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress in order to identify the proteins involved in muscle breakdown. Developing robust in vitro models for the study of sarcopenia using primary muscle cells is a high priority as is exploiting the in vitro models to understand catabolic and inflammatory processes and molecular mechanisms involved in sarcopenia. Co-cultures with adipose-derived and other cells may be used to screen for small molecules and biologicals capable of inhibiting the catabolic and inflammatory pathways involved in sarcopenia. This presentation reviews recent progress in this area and outlines opportunities for future research on sarcopenia.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 74 - 74
1 Nov 2018
Mobasheri A
Full Access

For many decades, we have viewed osteoarthritis (OA) as a homogeneous disease characterised by “wear and tear”. However, this view has been challenged recently and it is now clear that OA is a heterogeneous and low-grade inflammatory disease with multiple aetiologies and phenotypes. Each of these different phenotypes may be identified and targeted differently, opening up multiple pathways for therapeutic intervention. Combining imaging and carefully selected panels of biochemical markers can achieve enhanced patient stratification and lead to better-designed clinical trials. Analyses of observational studies and clinical trial datasets are underway to understand better the phenotypes responsible for why people develop OA and why, prognostically, they have differences in terms of disease progression. The aim of this presentation is to discuss the underlying mechanisms involved in common OA phenotypes, with a particular focus on low-grade inflammation and metabolic alterations. Aberrant cellular metabolism has been implicated in the pathogenesis of OA and this talk will summarise the current state of knowledge on the role of impaired metabolism in the cells of the osteoarthritic joint and highlight areas for future research, such as the potential to target metabolic pathways and mediators therapeutically.