header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_18 | Pages 2 - 2
1 Nov 2017
Young PS Greer AIM Tsimbouri MP Meek RMD Gadegaard N Dalby MJ
Full Access

Osteoporosis is a major healthcare burden, responsible for significant morbidity and mortality. Manipulating bone homeostasis would be invaluable in treating osteoporosis and optimising implant osseointegration. Strontium increases bone density through increased osteoblastogenesis, increased bone mineralisation, and reduced osteoclast activity. However, oral treatment may have significant side effects, precluding widespread use. We have recently shown that controlled disorder nanopatterned surfaces can control osteoblast differentiation and bone formation. We aimed to combine the osteogenic synergy of nanopatterning with local strontium delivery to avoid systemic side effects.

Using a sol-gel technique we developed strontium doped and/or nanopatterned titanium surfaces, with flat titanium controls including osteogenic and strontium doped media controls. These were characterised using atomic force microscopy and ICP-mass spectroscopy. Cellular response assessed using human osteoblast/osteoclast co-cultures including scanning electron microscopy, quantitative immunofluorescence, histochemical staining, ELISA and PCR techniques. We further performed RNAseq gene pathway combined with metabolomic pathway analysis to build gene/metabolite networks.

The surfaces eluted 800ng/cm2 strontium over 35 days with good surface fidelity. Osteoblast differentiation and bone formation increased significantly compared to controls and equivalently to oral treatment, suggesting improved osseointegration. Osteoclast pre-cursor survival and differentiation reduced via increased production of osteoprotegrin. We further delineated the complex cellular signalling and metabolic pathways involved including unique targets involved in osteoporosis.

We have developed unique nanopatterned strontium eluting surfaces that significantly increase bone formation and reduce osteoclastogenesis. This synergistic combination of topography and chemistry has great potential merit in fusion surgery and arthroplasty, as well as providing potential targets to treat osteoporosis.