header advert
Results 1 - 9 of 9
Results per page:
Bone & Joint Research
Vol. 7, Issue 10 | Pages 570 - 579
1 Oct 2018
Kallala R Harris WE Ibrahim M Dipane M McPherson E

Aims

Calcium sulphate has traditionally been used as a filler of dead space arising during surgery. Various complications have been described following the use of Stimulan bio-absorbable calcium sulphate beads. This study is a prospective observational study to assess the safety profile of these beads when used in revision arthroplasty, comparing the complication rates with those reported in the literature.

Methods

A total of 755 patients who underwent 456 revision total knee arthroplasties (TKA) and 299 revision total hip arthroplasties (THA), with a mean follow-up of 35 months (0 to 78) were included in the study.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 51 - 51
1 Dec 2017
McPherson E Chowdhry M Dipane M Kenney S
Full Access

Aim

Infection rates after revision THA vary widely, up to 12%. In countries that use antibiotic-loaded cemented stems in combination with perioperative IV antibiotics, infection rates in registry studies are lower. In many countries, however, cementless revision implants are preferred. Our aim was to apply an antibiotic-loaded calcium sulfate coating to cementless revision stems to reduce periprosthetic joint infection (PJI). This study sought to answer two questions: 1) Does the coating of cementless revision stems with calcium sulfate inhibit osteointegration in THA? 2) Does the antibiotic-loaded calcium sulfate coating of revision stems reduce the incidence of PJI?

Method

From Dec. 2010 to Dec. 2015, 111 consecutive revision femoral stems were coated with commercially pure calcium sulfate. 10cc of calcium sulfate was mixed with 1g of vancomycin powder and 240mg of tobramycin liquid and applied to the stem in a semi-firm liquid state immediately prior to stem insertion. The results are compared to a designated control cohort (N=104) performed across the previous 5 years. The surgical methods were comparable, but for the stem coating. All patients were staged preoperatively using the Musculoskeletal Infection Society Staging System and followed for at least 1 year.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 10 - 10
1 Dec 2016
McPherson E Czarkowski B McKinney B Dipane M
Full Access

Aim

Dissolvable antibiotic-loaded calcium sulphate beads have been utilized for management of periprosthetic joint infection (PJI) and for aseptic revision arthroplasty. However, wound drainage and toxic reactive synovitis have been substantial problems in prior studies. Currently a commercially pure, physiologic product has been introduced that may reduce complications associated with this treatment modality. We aim to answer the question: does a commercially pure, physiologic version of antibiotic-loaded calcium sulfate beads reduce wound drainage and provide efficacious treatment for PJI and aseptic revision arthroplasty?

Method

Starting January 2010, 756 consecutive procedures were performed utilizing a set protocol of Vancomycin and Tobramycin antibiotics in commercially pure dissolvable antibiotic beads. There were 8 designated study groups:

Aseptic Revision TKA N = 216 Aseptic Revision THA N = 185
DECRA* TKA N = 44 DECRA* THA N = 16
1st Stage Resection TKA N = 103 1st Stage Resection THA N = 62
Reimplant TKA N = 81 Reimplant THA N = 49

DECRA = Debridement, modular Exchange, Component Retention, iv Antibiotics for acute PJI


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 35 - 35
1 May 2016
McTighe T Brazil D Keggi J Keppler L McPherson E
Full Access

Over the past 10 years, the orthopedic community has witnessed an increased interest in more conservative surgical techniques for hip arthroplasty. During this time, second-generation hip resurfacing and minimally invasive surgery enjoyed extensive marketing attention. After a decade of this renewed interest, both of these methods have met with serious concerns. As hip resurfacing numbers decline, both patients and surgeons are looking for other potentially successful conservative treatments to THA. This search has focused surgeon interest toward short-stem designs.

Today, a variety of short-stem implants are available with very little clarification of design rationale, fixation features, surgical technique, and clinical outcomes. Virtually every major implant company now offers a “short stem,” and now there are a plethora of different designs. It is important to note, however, that not all short stems achieve initial fixation at the same bone interface region. Furthermore, surgical techniques vary greatly, and postoperative radiographic interpretation of short-stem position and fixation need to be carefully scrutinized.

The purpose of this paper is to review past, present, and potential future developments of short femoral stems and to present a classification system that can offer guidance when reporting on the many different stem variations.

Short Curved neck-sparing stem (JISRF classification 2a). Recently, new designs are following Pipino's Biodynamic stem style of saving the femoral neck. These designs feature a short curved stem that finds its stabilization contact region in the femoral neck and saves considerable bone in the medial calcar region. In addition, the curvature of the stem prevents violation of the lateral trochanteric region. The shorter stem also reduces blood loss by not reaming the femoral canal distally. These style stems generally have a variable stem length between 90 and 135 mm. This might not appear much shorter than conventional cementless stems (110 to 150 mm). However, the shorter curved neck sparing stems penetrate on average 1 to 2 cm less distally in the femoral canal.

Short stems have a definite role in modern THA, as greater emphasis is being placed on soft tissue and bone sparing techniques and as refinements continue in the understanding of proximal femoral fixation.

Metaphyseal short stems have significantly less surface contact area compared with conventional length stems and as a result, they might have less torsional and axial resistance.

Neck-retaining short stems provide additional axial and torsional stability and reduced stress at the implant– bone interface and may be a consideration in the more active patient profile. Bone quality and the patient's physical activity should be considered prior to the selection of short-stem devices. Many short-stem designs have considerably different style features that may alter bone remodeling. Knowing the design and the required technique is vital to fit the device properly to the patient. The variations of short stems available call for caution in their overall use until there is better understanding of how dependent these stems are on individual stem features, bone quality, and surgical techniques. Overall, the authors are cautiously optimistic and continue advocating their selective use.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 420 - 420
1 Dec 2013
McPherson E Burgett M Halim T Donaldson T Clarke I
Full Access

Controversy has existed for decades over the role of fretting-corrosion in modular CoCr heads used with stems of CoCr vs Ti6Al4V. Since retrieval data on taper performance remains scant, we report here an18-year survivorship of a Ti6Al4V: CoCr combination (APR design; Intermedics Inc). Unique to this study were the threaded profiles present on both stem and head tapers (Fig. 1).

This female patient was revised for pain, osteolysis and recurrent hip dislocation at 17 years, 10 months. A prior MPE hip replacement performed for her severely dysplastic right hip had lasted 11 years. At this 2nd revision, the 28 mm CoCr head was found dislocated posteriorly and superiorly. Metallosis was evident in the tissues. The polyethylene liner showed extensive rim damage on both anterior and posterior aspects. The neck of her APR Revision stem (Intermedics Inc) had worn through the polyethylene rim and impinged on the metal cage. The cage was found loose, the liner had disassociated, and the peri-trochanteric areas were compromised by massive osteolysis. The femoral stem and head were removed together without disassembly. The femoral stem and acetabular construct were replaced by an ARCOS revision system using 36 mm head with a Freedom cup (cemented to Max-Ti cage; Biomet Inc.).

The complete femoral neck and head were bi-valved assembled in horizontal plane for direct imaging by interferometry and SEM (Fig. 1a). After sectioning the head separated from the stem. Quantitative imaging used 1 to 5 regions with 6-replicate measurements per region and differentiation into contact and non-contact zones (Fig. 1b). Visual corrosion mapping (3) was recorded digitally in 4 anatomical views (Figs 1b–f).

The thread profile on contact zone inside the head (Fig. 2a) had a pitch of approximately 40 μm and a peak-to-valley depth of 4 μm overall (Fig. 2b profile section of thread: PV = 2 μm). The thread profile on stem trunnion (Fig. 3a) had a pitch of approximately 125 μm and a peak-to-valley depth of 3.5 μm overall (Fig. 2b profile section of thread: PV = 1 μm). Thus the stem trunnion thread was much coarser than the head. Overall corrosion grading was judged very mild. Overall we were satisfied that this Ti6Al4V: CoCr combination taper junction with threaded interfaces had performed very well for 18 years. Nevertheless, our visual grading was subject to opinion and thus unrewarding. The continuing project will quantify the contacting and non-contacting regions of head and stem (Fig. 1b).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 259 - 259
1 Mar 2013
McTighe T Keggi J Keppler L Aram T Bryant C Ponder C Vaughn BK McPherson E
Full Access

Introduction

Architectural changes occurring in the proximal femur after THA continues to be a problem. Stress shielding occurs regardless of fixation method. The resultant bone loss can lead to implant loosening and breakage of the implant. A new novel tissue sparing neck-stabilised stem has been designed to address these concerns.

Methods

Over 1,200 stems have been implanted since April 2010 and 2012. Patient profile showed two-thirds being female with an age range between 17 to early 90s. 90% were treated for OA. This stem has been used in all Dorr bone classification (A, B, & C). Two surgical approaches were utilised (single anterior incision and standard posterior incision). All were used with a variety of cementless acetabular components and a variety of bearing surfaces (CoC, CoP, MoM, MoP). Complications were track by surgeon Members of the Tissue Sparing Study Group of the Joint Implant Surgery and Research Foundation. Complications include first year of limited clinical release. No surgeon was permitted usage without specific cadaver / surgical training. No head diameters below 32 mm were used.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 260 - 260
1 Mar 2013
McTighe T Stulberg SD Keppler L Keggi J Kennon R Aram T McPherson E
Full Access

Introduction

The use of short stems has been growing in THA for the past five years. As a result, a large number of short stem designs are available in the market place. However, fixation points differ for many of the designs resulting in different radiographic modeling creating confusion when trying to collate to clinical findings. We have created a classification system in an attempted to provide clarity in analyzing radiographic and clinical findings.

Method

Femoral implants described as “short stems” were evaluated. The range of lengths for stem type and the method of achieving initial implant stability was determined. The optimal radiographic position of each of these implants and type of bone remodeling associated with this placement was evaluated. Stems were defined as “short” if the tip reached or was proximal to the metaphyseal-diaphyseal junction. This location on the proximal femur was defined as the place at which the medial-lateral metaphyseal flare became parallel. Stems were then classified as: 1.) Metaphyseal Stabilized; 2.) Neck Stabilized; 3.) Head Stabilized. An analysis of radiographic with a minimum of one year follow up were reviewed and posted as to the classification system


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 404 - 404
1 Nov 2011
Clarke IC Kubo K Lombardi A McPherson E Turnbull A Gustafson A Donaldson D
Full Access

Ceramic-on-ceramic alumina bearings (ALX) have demonstrated low wear with minimal biological consequences for almost four decades. An alumina-zirconia composite (BIOLOX-DELTATM) was introduced in 2000 as an alternative ceramic. This contains well-distributed zirconia grains that can undergo some surface phase transformations from tetragonal to monoclinic. We analyzed 5 cases revised at 1–7 years to compare to our simulator wear studies. For the retrieved DELTA bearings, two important questions were

how much tetragonal to monoclinic transformation was there in the zirconia phase and

how much did the articular surfaces roughen, either as a result of this transformation or from formation of stripe wear zones?

The retrieval cases were photographed and logged with respect to clinical and revision details. The DELTA balls varied from 22mm to 36mm diameters. These had been mated with liner inserts varying by UHMWPE, BIOLOX-FORTE and BIOLOX-DELTA materials. Bearing features were analyzed for roughness by white-light interferometry, for wear by SEM, for dimensions by CMM and for transfer layers by EDS technique. Surface transformations on DELTA retrievals were mapped by XRD. The four combinations of 36mm diameter BIOLOX-FORTE and BIOLOX-DELTA were studied in a hip simulator, which was run in ‘severe’ micro-separation test mode to 5 million cycles. Wear rates, wear stripes, bearing roughness and wear debris were compared to the retrieval data.

In two DELTA ball cases, there were conspicuous impingement signs, stripe wear and black metallic smears. It is to be noted that the metal transfer sites (EDS) appeared to be from the revision procedures. The retrieved balls run with alumina liners showed monoclinic phase peaking at 32% on the particular surface and internal bore. On the fracture surface of case 1, the monoclinic content had increased to 40%. Various surface roughness indices were assessed on the bearings. The polished articular surfaces averaged roughness (Sa) of the order 3 nm, representing extremely smooth surfaces. The main wear zone was only marginally rougher (5 nm). In contrast the stripe wear zones had roughness of the order 55–140 nm.

In the laboratory, the DELTA bearings provided a 3–6 fold wear reduction compared to FORTE controls. Roughness of stripes increased to maximum 113nm on controls. Roughness of wear stripes showed FORTE with the highest and DELTA with the lowest values. DELTA bearings also revealed much milder wear by SEM imaging. Phase transformations showed peaks at < 30% for both main wear zone and stripe wear sites. It is hypothesized that the concentration of monoclinic phase reached a certain level due to compression contraint imposed by the alumina matrix. With implant wear, additional tetragonal grains of zirconia are exposed and these will also transform to tetragonal. This consistency between laboratory and retrieval studies confirmed the stable nature of the bearings. The BIOLOX-DELTA combination provides optimal potential for a clinically relevant reduction in stripe wear.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 166 - 166
1 Mar 2010
Clarke I Lazennec Y Cattonne Y Kubo K Anderson I McPherson E Donaldson T
Full Access

FDA approval of metal-on-metal (MOM: 28, 32mm) bearings has provided 10 years of clinical experiences in USA. However there has been no detailed mapping of wear phenomena in retrieval cases. We present an analysis of 28 cases, MOM retrievals with 1 to 10 years follow-up, radiographic reviews and metal ion studies. Ball diameters ranged from 28mm to 42mm. Two balls were the early design with skirts. Main indicators for revision were the progressive radiographic changes indicative of osteolysis, with associated hip pain. Approximately 54% of patients were males and ages ranged from 36 to 76 years of age. Only 7 femoral stems were recovered but all had impingement marks. Only three cases lacked any evidence of stripe wear and these were in very elderly patients. Approximately 85% of these cases showed some evidence of stripe wear and multiple stripes were clearly visible on 50% of the femoral balls. The medial ball stripes were twice as common as lateral. Stripe wear was identified in 25% of CoCr liners.

In the hip simulator studies generally show ‘run-in’ wear rates of 1–7mm3 per million cycles (Mc). We noted that above the 5mm3/Mc threshold, the serum generally appeared black. In contrast, the ‘steady-state’ wear rates of 0.1–1.6 mm3/Mc showed the true potential of MOM bearings. However there were often examples of higher wear (7–20 mm3/Mc), which gave confounding trends in published studies. Our studies of metal ions in the simulator lubricant provided a very accurate representation of MOM wear.

There are many limitations in comparing in-vitro to in-vivo wear performance. Our retrieval data are biased to cases that failed due to hip pain, had radiographic signs of progressive osteolysis and some showed high levels of metal ions. There was also the bias of having predominantly a CoCr sandwich design (polyethylene adaptor). Use of the small ball added the well-known risks of impingement, subluxation and dislocation with rigid cups. Using the ‘damage modes’ from McKellop, we found only normal Mode-1 wear to be rare in these cases, whereas Modes# 2–4 had an incidence approaching 30% each. Signs of impingement were evident in 85% of our cases. Thus summarizing these MOM wear phenomena in retrieved 28mm sandwich cups, the evidence implicated impingement and 3rd-body wear modes (#2–4) as the clinical risk for adverse wear effects at 10 years follow-up. The in-vitro wear studies have not yet simulated such adverse clinical effects.