header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 23 - 23
1 Apr 2022
Macdonald H Gardner A Evans J Sayers A Whitehouse M
Full Access

Dual-mobility constructs (DMCs) are increasingly used for total hip replacement (THR) following hip fracture.

The aims of this study were to identify whether there was a difference in all-cause construct survival following THR with a DMC (DMC-THR) or with a conventional construct following hip fracture, and to identify the expected net all-cause construct survival for DMC-THR performed for hip fracture.

We performed a systematic review and meta-analysis of published studies (including joint registries) including DMC-THR for hip fracture which provided Kaplan-Meier (KM) survival estimates. The primary outcome was all-cause construct survival over time.

318 papers and 17 registry reports were identified. Three studies (two registry reports and one cohort study utilising joint registry data) met the inclusion criteria, including 8,834 DMC-THRs and 63,865 conventional THRs. Upon meta-analysis, DMC-THRs had lower all-cause construct survival. Five-year KM estimates (95% confidence intervals) were 95.3% (94.6–95.9%) for DMC-THR and 96.1% (95.9–96.3%) for conventional THR.

These results suggest there is a small absolute but not clinically significant all-cause implant survival difference between THR with DMC and conventional implants following hip fracture. Given the higher comparative cost of DMC, this analysis does not support its routine use.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 1 - 1
1 Sep 2012
Boyd SK Schnackenburg KE Macdonald H Ferber R Wiley P
Full Access

Purpose

Stress fractures (SFs) are highly prevalent in female athletes, especially runners (1337%), and result in pain and lost training time. There are numerous risk factors for SFs in athletes; however, the role of bone quality in the etiology of SFs is currently unknown. Therefore, our primary objective was to examine whether there are characteristic differences in bone quality and bone strength in female athletes with lower limb SFs using high-resolution peripheral quantitative computed tomography (HR-pQCT). A secondary objective was to compare muscle strength between SF subjects and controls.

Method

Female athletes with (n=19) and without (n=19) lower limb SFs were recruited from the local community. All SFs were medically confirmed by a physician and subjects were assessed within 1–47 weeks (12.7 13.7) of diagnosis. Controls were age-, training volume- and sport-matched to SF athletes. Bone density and microarchitectural bone parameters such as cortical thickness and porosity, as well as trabecular thickness, separation and number of all subjects were assessed using HR-pQCT at two distal tibia scanning sites (distal, ultra-distal). Finite element (FE) analysis was employed to estimate bone strength and load sharing of cortical and trabecular bone from the HR-pQCT scans. Regional analysis was applied to the HR-pQCT scans to investigate site-specific bone differences between groups. Muscle torque was measured by a Biodex dynamometer as a surrogate of muscle strength. Independent sample t-tests and Mann-Whitney U-tests were used for statistical analyses (p < 0.05).