header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims

A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation.

Methods

This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 24 - 24
1 Oct 2019
Livermore AT Erickson J Hickerson M Peters CL
Full Access

Introduction

Total knee arthroplasty (TKA) reliably improves pain and function in patients with knee osteoarthritis (OA), though a substantial percentage of patients remain unsatisfied. Reasons include the presence of complications, persistent pain, and unmet expectations. The aim of this study was to determine whether the sequential addition of accelerometer-based navigation of the distal femoral cut and sensor-assisted soft tissue balancing changed complication rates, radiographic alignment, or patient-reported outcomes (PROs) compared to TKA performed with conventional instrumentation.

Methods

This retrospective cohort study included 371 TKAs in 319 patients. All surgeries were performed by a single surgeon in sequential fashion using a measured resection technique with a goal of mechanical alignment. The historical control group, utilizing intramedullary guides for distal femoral resection and surgeon-guided soft tissue balancing, was compared to group 1 (accelerometer-based navigation for distal femoral resection, surgeon-guided balancing) and group 2 (navigated femoral resection, sensor-guided balancing). Primary outcome measures were PROMIS scores including physical function computerized adaptive test (PF CAT), and the Global 10 health assessment (including physical, mental, and pain scores), and Knee Injury Osteoarthritis and Outcome Score (KOOS), measured preoperatively and at 6 weeks and 12 months postoperatively. Radiographic measurements included component position and overall mechanical alignment of the limb and were made at 6 weeks by a single examiner from hip to ankle standing films. Charts were reviewed for pre- and postoperative ROM at 6 weeks, polyethylene insert morphology, and postoperative hematocrit change. Complications were recorded, including manipulation under anesthesia and reoperation. Our study was powered to detect a difference of 1 standard deviation in PF CAT score with 100 patients. Statistical analysis was performed by a statistician including t-tests, multivariate regression, and time series plot analyses.