header advert
Results 1 - 20 of 24
Results per page:
Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 107 - 107
4 Apr 2023
Li C Ding Y Li S Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches.

We performed immunohistochemical staining for TAK1 in synovial tissue, both in osteoarthritis patients and healthy control. Besides, immunofluorescence staining for F4/80 as macrophage marker and TAK1 were conducted as well. TAK1 expression was examined in RAW264.7 macrophages stimulated by HMGB1 via qPCR (Quantitative polymerase chain reaction) and Western blotting, and the effect of TAK1 inhibitor (5z-7 oxozeaenol) on TNF-α production was evaluated by immunofluorescence staining. Further, we explored the influence of intra-articular shRNA (short hairpin RNA) targeting TAK1 on collagenase-induced osteoarthritis in mice.

Immunohistochemical staining confirmed significant elevation of TAK1 in osteoarthritic synovium, and immunofluorescence staining suggested macrophages as predominant residence of TAK1. In HMGB1-stimulated RAW264.7 macrophages, TAK1 expression was up-regulated both in mRNA and protein level. Besides, TAK1 inhibitor significantly impairs the production of TNF-α by macrophages upon HMGB1 stimulation. Moreover, intra-articular injection of lentivirus loaded with shRNA targeting TAK1 (sh-TAK1) reduced peri-articular osteophyte formation in collagenase-induced osteoarthritis in mice.

TAK1 exerts a potent role in the pathogenesis of osteoarthritis by mediating the activation of macrophages.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 92 - 92
4 Apr 2023
Li S Ding Y Wu C Lin S Wen Z
Full Access

For patients who took joint replacement, one of the complications, aseptic joint loosening, could cause a high risk of revision surgery. Studies have shown that MSCs have the ability of homing and differentiating, and also have highly effective immune regulation and anti-inflammatory effects. However, few studies had focused on the stem cells in preventing the occurrence and development of aseptic loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells could inhibited the aseptic joint loosening caused by wear particles.

A Cranial osteolysis mice model was established on mice to examine the effect of hUC-MSCs on the Titanium particles injection area through micro-CT. The amount of stem cells injected was 2 × 10 5 cells. One week later, the mouse Cranial were obtained for micro-CT scan, and then stained with HE analysis immunohistochemical analysis of TNF-α, CD68, CCL3 and Il-1β.

All mice were free of fever and other adverse reactions, and there was no death occurred. Titanium particles caused the osteolysis at the mice cranial, while local injection of hUC-MSCs did inhibit the cranial osteolysis, with a lower BV/TV and a higher porosity. Immunohistochemical results suggested that the expression of TNF-α, CD68, CCL3 and Il-1β in the cranial in Titanium particles mice increased significantly, but was significantly reduced in mice injected with hUC-MSCs. The inhibited CD68 expression indicated that the number of macrophage was lower, which might be a result of the inhibition of CCL3.

According to the studies above, HUC-MSCs treatment of mouse cranial osteolysis model can significantly reduce osteolysis, inhibit macrophage recruitment, alleviate inflammatory response, without causing adverse reactions. It may become a promising treatment of aseptic joint loosening.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening.

Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival.

In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed.

Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process.

A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a.

Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage.

In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 112 - 112
4 Apr 2023
Sun Y Ding Y Wu H Wu C Li S
Full Access

Osteoarthritis (OA) is a common age-related degenerative joint disease, affecting 7% of the global population, more than 500 million people worldwide. Exosomes from mesenchymal stem cells (MSCs) showed promise for OA treatment, but the insufficient biological targeting weakens its efficacy and might bring side effects. Here, we report the chondrocyte-targeted exosomes synthesized via click chemistry as a novel treatment for OA.

Exosomes are isolated from human umbilical cord-derived MSCs (hUC-MSCs) using multistep ultracentrifugation process, and identified by electron microscope and nanoparticle tracking analysis (NTA). Chondrocyte affinity peptide (CAP) is conjugated on the surface of exosomes using click chemistry. For tracking, nontagged exosomes and CAP-exosomes are labeled by Dil, a fluorescent dye that highlights the lipid membrane of exosomes. To verify the effects of CAP-exosomes, nontagged exosomes and CAP-exosomes are added into the culture medium of interleukin (IL)-1β-induced chondrocytes. Immunofluorescence are used to test the expression of matrix metalloproteinase (MMP)-13.

CAP-exosomes, compared with nontagged exosomes, are more easily absorbed by chondrocytes. What's more, CAP-exosomes induced lower MMP-13 expression of chondrocytes when compared with nontagged exosomes (p<0.001).

CAP-exosomes show chondrocyte-targeting and exert better protective effect than nontagged exosomes on chondrocyte extracellular matrix. Histological and in vivo validation are now being conducted.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims

It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth.

Methods

C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims

To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle.

Methods

In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 445 - 458
7 Jul 2021
Zhu S Zhang X Chen X Wang Y Li S Qian W

Aims

The value of core decompression (CD) in the treatment of osteonecrosis of the femoral head (ONFH) remains controversial. We conducted a systematic review and meta-analysis to evaluate whether CD combined with other treatments could improve the clinical and radiological outcomes of ONFH patients compared with CD alone.

Methods

We searched the PubMed, Embase, Web of Science, and Cochrane Library databases until June 2020. All randomized controlled trials (RCTs) and clinical controlled trials (CCTs) comparing CD alone and CD combined with other measures (CD + cell therapy, CD + bone grafting, CD + porous tantalum rod, etc.) for the treatment of ONFH were considered eligible for inclusion. The primary outcomes of interest were Harris Hip Score (HHS), ONFH stage progression, structural failure (collapse) of the femoral head, and conversion to total hip arthroplasty (THA). The pooled data were analyzed using Review Manager 5.3 software.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated.

Cite this article: Bone Joint Res 2020;9(8):524–530.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 872 - 879
1 Jul 2019
Li S Zhong N Xu W Yang X Wei H Xiao J

Aims

The aim of this study was to explore the prognostic factors for postoperative neurological recovery and survival in patients with complete paralysis due to neoplastic epidural spinal cord compression.

Patients and Methods

The medical records of 135 patients with complete paralysis due to neoplastic cord compression were retrospectively reviewed. Potential factors including the timing of surgery, muscular tone, and tumour characteristics were analyzed in relation to neurological recovery using logistical regression analysis. The association between neurological recovery and survival was analyzed using a Cox model. A nomogram was formulated to predict recovery.


Background

Revision total ankle arthroplasty (TAA) can be extremely challenging due to bone loss and deformity. We present the results examining the preliminary indications and short term outcomes for the use of the Salto XT revision prosthesis.

Material and methods

We conducted an IRB approved prospective review revision TAA performed in two institutions using the Salto XT. There were 40 patients (24 females and 16 males with an average age of 65 years (45–83), who had undergone previous TAA (Agility 27, Salto 4, STAR 4, Buechal Pappas 1), and 4 patients who underwent staged procedures for infection. The primary indications for the revision were loosening and subsidence (34), malalignment (17), cyst formation (8), infection (4).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_19 | Pages 21 - 21
1 Nov 2016
Myerson M Li S Taghavi C Tracey T
Full Access

Background

Subtalar nonunion has a detrimental effect on patients' function, and pose a significant challenge for surgeons particularly in the setting of higher risk factors.

Methods

We retrospectively analyzed a consecutive series of 49 subtalar nonunions between October 2001 and July 2013. Patient records and radiographs were reviewed for specific patient demographics and comorbidities, subsequent treatments, revision fusion rate, use of bone graft, complications, and clinical outcome.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_19 | Pages 3 - 3
1 Nov 2016
Li S Myerson M Monteagudo M
Full Access

Müller Weiss disease (MWD) is characterized by lateral navicular necrosis which is associated with a varus alignment of the subtalar joint, varying degrees of arthritis of the talonavicular-cuneiform joints and a paradoxical flatfoot deformity in advanced cases. Although arthrodesis of the hindfoot is commonly used, we present the results of a previously unreported method of treatment using a calcaneus osteotomy incorporating a wedge and lateral translation.

Fourteen patients with MWD who were treated with a calcaneus osteotomy were retrospectively reviewed. There were seven females and seven males with an average age of 56 years (range 33–79), and included one grade 5, five grade 4, four grade 3 and four grade 2 patients. Patients had been symptomatic for an average of eleven years (range 1–14), and all underwent initial conservative treatment with an orthotic support that posted the heel into valgus. The primary indication for surgery was a limited but positive response to the use of the orthotic support, and a desire to avoid an arthrodesis of the hindfoot.

Results

Patients were followed for an average of three years following the procedure (range 1 – 7 years). Patients rated their pain on a visual analogue pain scale as an average of 8 (range 6–9) prior to surgery and an average of 2 postoperatively (range 0–4). The AOFAS scores improved from a mean of 29 (range 25 – 35) preoperatively to a mean of 79 (range 75–88) postoperatively. Hindfoot range of motion remained and the extent of arthritis of the navicular complex was unchanged. No patient has since required an arthrodesis.

Since the majority of MWD patients respond to an orthotic support which changes the load of the hindfoot and forefoot, we believed that patients would respond positively to a calcaneal osteotomy as an alternative treatment.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_19 | Pages 18 - 18
1 Nov 2016
Myerson M Tracey T Kaplan J Li S
Full Access

Background

There have been multiple techniques described to determine hindfoot alignment radiographically. The 2-dimensional nature of radiographs fails to take into account the contribution of the remainder of the foot to overall alignment. A new radiographic technique has been published in which the hindfoot alignment is calculated using the Ground Reaction Force Calcanea Offset. This technique accounts for the individual forefoot contribution to alignment, but is still limited by it´s 2-dimensional nature. The purpose of this study was to compare the hindfoot moment arm (HMA) described by Saltzman and the hindfoot alignment angle (HAA) described by Williamson, with a technique determining the ground reaction force calcaneal offset (GRF-CT) using 3-dimensional weight bearing CT Scans.

Methods

The HMA, HAA, and GRF-CT 3-D weight bearing CT scans were measured by three different investigators. Each of these measurements were calculated twice on separate occasions by each investigator to determine the intra- and inter-observer reliability.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 106 - 106
1 Aug 2012
Li S Caterson B Hayes A Hughes C
Full Access

Introduction

Novel chondroitin sulphate (CS) sulphation motifs on cell-associated proteoglycans (PGs) have been shown to be putative biomarkers of progenitor/stem cell sub-populations (Hayes et al., 2007; Dowthwaite et al., 2005). Also, recent studies show that unique CS sulphation motifs are localized in putative stem/progenitor cell niches at sites of incipient articular cartilage & other musculoskeletal tissues (Hayes et al., 2011), which indicates their potential importance in cell differentiation during development. In this study, we investigated the importance of CS in the differentiation of bone marrow stem cells to the chondrogenic phenotype in vitro using p-nitrophenyl xyloside (PNPX) as a competitive inhibitor of CS substitution on matrix PGs.

Methods

Bovine bone marrow stem cells (BMSCs) were isolated from 7-day-old cow hock joints and cultured as monolayer for 4 weeks with chondrogenic medium ± 0.25mM PNPX. DMMB assay, real-time PCR, Western Blotting & immunohistochemistry (IHC) were used to analysis the chondrogenic markers. The expression and distribution of structural CS proteoglycans (CS-PGs) were analysed by immunofluorescent staining combined with confocal microscopy scanning.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 18 - 18
1 Aug 2012
Li S Chen J Caterson B Hughes C
Full Access

Introduction

Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy affecting approximately 3 million people in China (Stone R, 2009). The precise aetiology of KBD is not clear, but the lack of selenium and the pollution of mycotoxins in food are a suspected cause of KBD. In this pilot study, we use a rat model to investigate the effect of low selenium and T-2 toxin on articular cartilage metabolism.

Methods

140 male Sprague-Dawley rats were fed with selenium-deficient or normal diet for 4 weeks to produce a low selenium or normal nutrition status. The rats were then fed for a further 4 weeks with low selenium or normal diets with or without T-2 toxin (100ng per gram body weight per day). The rat knee joints were fixed and paraffin embedded and histological and immunohistochemical staining was performed to analyse the metabolism of articular cartilage.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 45 - 45
1 May 2012
Li S Duance V Blain E
Full Access

Introduction

Low back pain is a major public health problem in our society. Degeneration of intervertebral disc (IVD) appears to be the leading cause of chronic low-back pain [1]. Mechanical stimulations including compressive and tensional forces are directly implicated in IVD degeneration. Several studies have implicated the cytoskeleton in mechanotransduction [2, 3], which is important for communication and transport between the cells and extracellular matrix (ECM). However, the potential roles of the cytoskeletal elements in the mechanotransduction pathways in IVD are largely unknown.

Methods

Outer annulus fibrosus (OAF) and nucleus pulposus (NP) cells from skeletally mature bovine IVD were either seeded onto Flexcell¯ type I collagen coated plates or seeded in 3% agarose gels, respectively. OAF cells were subjected to cyclic tensile strain (10%, 1Hz) and NP cells to cyclic compressive strain (10%, 1Hz) for 60 minutes. Post-loading, cells were processed for immunofluorescence microscopy and RNA extracted for quantitative PCR analysis.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 72 - 72
1 Jan 2011
Li S Hughes C Melrose J Smith SM Little CB Caterson B Hayes AJ
Full Access

Introduction: In a previous study (Hayes et al., 2007)we reported that novel chondroitin sulphate (CS) sulphation motifs on cell-associated proteoglycans (PGs) may be putative biomarkers of progenitor/stem cell sub-populations resident within the superficial zone of articular cartilage (Dowthwaite et al., 2005). In this study, using the same panel of antibodies, we examine the distribution of novel CS sulphation epitopes in a more clinically relevant model – the developing human knee joint.

Methods: Twelve-14 week human foetal knee joint rudiments were processed into paraffin wax then de-waxed and immunoperoxidase-stained with mAbs 3B3(−), 7D4 and 4C3 using the Vector Universal Elite kit with Nova Red, Mayers Haematoxylin, mounted under coverslips and then photographed.

Results: All three CS sulphation motif epitopes localised prominently at sites of incipient articular cartilage formation at a stage before there was any histological evidence of secondary ossification at the epiphysis. Interestingly, these CS epitopes were also detectable in very defined regions within the perichondrium; growth plate; the fibrocartilage of both meniscus and enthesis; vasculature; and at sites of capillary invasion, with subtle differences in their distribution; for example, 3B3(−) identified the cellular lining of cartilage canals within the epiphyses, whereas 7D4 labelled more their cellular contents.

Discussion: The results of this study show that novel CS sulphation motifs on cell and matrix PGs play important and diverse roles in the development of a wide range of musculoskeletal connective tissues, including articular cartilage. We hypothesize that the unique sulphation sequences on CS-containing PGs are involved in regulating cell proliferation and differentiation events, through interaction with soluble signalling molecules (e.g. growth factors) in the extracellular milieu. These antibodies show considerable promise for uses in tissue engineering applications for identifying and sorting stem/progenitor cells for regeneration of musculoskeletal tissues.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 380 - 381
1 Oct 2006
Day M Cao J Li S Hayes A Hughes C Evans R Dent C Caterson B
Full Access

Introduction: Kashin-Beck disease (KBD) is a special endemic osteoarthropathy whose main pathologic changes occur in growth plate cartilage and articular cartilage of human limbs and joints where it is manifested as cartilage degeneration and necrosis. Past and current research suggests that KBD, and its endemic geographic distribution in China, is due to the combined presence of fungal mycotoxins (on stored food ingested by affected populations) and a regional selenium deficiency in the environment providing local food sources. Thus, we hypothesise that the presence of fungal mycotoxins and the absence of selenium in the diet specifically affects chondrocyte metabolism in the growth plate during limb and joint development and in articular cartilage of adults, which leads to localised tissue necrosis, and the onset of degenerative joint disease. The aim of this study was to examine the effects of mycotoxins; e.g. Nivalenol (NIV), selenium and NIV in the presence of selen! ium in in vitro chondrocyte culture systems to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD.

Methods: Chondrocyte tissue cultures were established using cartilage explant cultures either in the presence or absence of selenium (0.5–1.5 microg/ml) and the mycotoxin nivalenol (0.5–1.5 microg/ml) and culture for 1 to 4 days. Medium was harvested daily at day 1 through 4 and analysed for glycosaminoglycan (GAG) release and the presence of aggrecanase or MMP activity using RT-PCR for gene expression and monoclonal antibodies that detect their respective enzyme-generated neo-epitopes on cartilage aggrecan metabolites.

Results: Our studies to date have shown that NIV exposure induces catabolic changes in chondrocyte metabolism with an increased expression of aggrecanase activity. Addition of selenium did not affect mRNA expression of the aggrecanases ADAMTS-4 & 5. Parallel studies involving immunohistochemical analyses of articular cartilage from KBD showed an increase in aggrecanase activity.

Conclusions: These studies demonstrate that induction of aggrecanase activity as one of the molecular mechanisms involved is the pathogenesis of KBD. However, the addition of selenium does not alter aggrecanase gene expression indicating that its beneficial effects are occurring in other areas of cartilage metabolism.