header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 82 - 82
1 Apr 2018
Alberton P Farkas Z Prein C Schwarz J Li P Clausen-Schaumann H Oohashi T Aszodi A
Full Access

Introduction

The proteoglycan aggrecan is a major component of the cartilaginous matrices which provides resistance against compressive forces. Spontaneously occurring functional null mutations in the aggrecan gene (Acan) in various species lead to perinatal chondrodysplasia. The aim of the present study was to investigate the cellular and biomechanical properties of the cartilaginous growth plate, and the development of intervertebral disc in a novel, experimentally induced aggrecan mutant mouse strain carrying an insertion in exon 5 of the Acan gene.

Methods

The novel aggrecan mutant mice were generated by inserting a loxP site into exon 5 (E5i) by homologous recombination in ES cells. Wild type and homozygous mutant (Acan-E5i/E5i) mice were analyzed by skeletal staining, histology and immunohistochemistry. Proliferation and survival were assessed by phosphorylated histone H3 immunostaining and TUNEL assay, respectively. Shape index (SI) in the proliferative zone (PZ) of the growth plate (GP) was calculated as a ratio of the long and short axes of the cells. Orientation of the PZ chondrocytes was characterized by the angle between the cell long axis and longitudinal direction of the bone growth. Imaging and stiffness measurements were performed by atomic force microscopy (AFM).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 205 - 205
1 Jul 2014
Yeung K Zhao Y Li P Xu Z Chu P
Full Access

Summary Statement

3D porous and nano-structured polyetheretherketone (PEEK) surface embedded with biofunctional groups can not only induce the up-regulation of osteogenic genes and proteins in-vitro, but also help promote new bone formation in-vivo.

Introduction

Porous biomaterials with three-dimensional (3D) surface structure can enhance biological functionalities especially in bone tissue engineering. Many techniques have hitherto been utilised to fabricate porous structures on metal surfaces, including machining, shotblasting, anodic oxidation, alkali treatment and acid-etching. However, it has been difficult to accomplish this on polyetheretherketone (PEEK) due to its inherent chemical inertness. In this study, we have applied a method comprising of sulfonation and water immersion to establish a 3D porous and nanostructured network on the PEEK surface. This newly established 3D network embedded with bio-functional groups can help promote new bone formation in-vivo.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 22 - 25
1 Jan 1996
Campbell DG Li P Oakeshott RD

Infection of human cartilage with HIV in vivo has not previously been reported. Specimens of articular cartilage taken at postmortem from ten patients who were HIV-positive were examined. Two had AIDS and eight were believed to have stage-2 disease.

The standard polymerase chain reaction (PCR) protocol was modified to allow semiquantitative analysis of the samples. Oligonucleotide primers labelled with 32P gamma-ATP were used to detect a segment of HIV DNA and a control DNA gene segment (HLA genome) to estimate the ratio of infected cells. The 32P-labelled PCR products were separated on acrylamide gels and visualised directly by autoradiography and computer densitometry.

Infection of human cartilage in vivo was demonstrated in nine of the ten samples in which the PCR analysis was positive. The other did not react sufficiently to produce detectable radiolabelled PCR product despite repeated DNA digestion and extraction. Cartilage infected with HIV could be a potential source of HIV when used in operations.