header advert
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 82 - 82
1 May 2019
Lewallen D
Full Access

Total knee replacement (TKA) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKA have changed, with ever younger, more active and heavier patients receiving TKA. This broadening of indications coincided with the widespread adoption of modular cemented and cementless TKA systems in the 1980's, and soon thereafter wear debris related osteolysis and associated prosthetic loosening became major modes of failure for TKA implants of all designs.

Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of some of these implant designs have demonstrated excellent durability in survivorship studies out to twenty years. While aseptic loosening of these all polyethylene tibial components was a leading cause of failure in these implants, major polyethylene wear-related osteolysis around well-fixed implants was rarely (if ever) observed.

Cemented metal-backed nonmodular tibial components were first introduced to allow for improved tibial load distribution and protection of the underlying (often osteoporotic) bone. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and also aided the addition of stems and wedges.

Modular vs. All Polyethylene Tibial Components in Primary TKA: Kremers et al. reviewed 10,601 adult (>18 years) patients with 14,524 condylar type primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005 and examined factors effecting outcome. The mean age was 68.7 years and 55% were female. Over an average 9 years follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all polyethylene tibias (HR 0.3, 95% CI: 0.2, 0.5). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, osteolysis. Among patient characteristics, male gender, younger age, higher BMI were all significantly associated with higher risk of revisions (p<0.008).

In a more recent review from our institution of over 11, 600 primary TKA procedures, Houdek et al. again showed that all polyethylene tibial components had superior survivorship vs. metal backed designs, with a lower risk of revision for loosening, osteolysis or component fracture. Furthermore, results for all polyethylene designs were better for all BMI subgroups except for those <25 BMI where there was no difference. All polyethylene results were also better for all age groups except for those under age <55 where there again was no difference.

Finally, in a recently published meta-analysis of 28 articles containing data on 95,847 primary TKA procedures, all polyethylene tibial components were associated with a lower risk of revision and adverse outcomes. The available current data support the use of all polyethylene tibial designs in TKA in all patients regardless of age and BMI. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the better survivorship and lower risk of revision than seen with modular metal backed tibial components.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 67 - 67
1 May 2019
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal metaphyseal cones in combination with an initial cemented or partially cemented implant has been shown to provide versatile and highly durable results for a range of bone defects including those previously requiring structural bone graft. The hybrid fixation combination of both cement and cementless fixation of an individual tibial or femoral component has emerged as a frequent and often preferred technique. Initial secure and motionless interfaces are provided by the cemented portions of the construct, while subsequent bone ingrowth to the cementless porous metal portions is the key to long term stable fixation. As bone grows into the porous portions there is off loading and protection of the cemented interfaces from mechanical stresses. While maximizing support on intact host bone has been a longstanding fundamental principle of revision arthroplasty, this is facilitated by the use of metaphyseal cones or sleeves in combination with initial fixation into the adjacent diaphysis. Preoperative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the preoperative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intraoperative findings such as occult fracture through deficient periprosthetic bone. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions, the degree of revision implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus, some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects, especially of the cavitary sort, may be well managed with minimal constraint.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 116 - 116
1 May 2019
Lewallen D
Full Access

The direct lateral (or anterolateral) approaches to the hip for revision THA involve detachment of the anterior aspect of the gluteus medius from the trochanter along with a contiguous sleeve of the vastus lateralis. Anterior retraction of this flap of gluteus medius and vastus lateralis and simultaneous posterior retraction of the femur creates an interval for division of gluteus minimus and deeper capsular tissues and exposure of the joint. To enhance reattachment of this flap of the anterior portion of the gluteus medius and vastus lateralis back to the trochanter, an oblique wafer of bone can be elevated along with the muscle off of the anterolateral portion of the trochanter. This bony wafer prevents suture pull out when large nonabsorbable sutures are used around or through the fragment and passed into the bone of the trochanteric bed for reattachment during closure. To prevent excessive splitting proximally into the gluteus medius muscle (and resulting damage to the superior gluteal nerve), it is often helpful to extend the muscle split further distally down into the vastus lateralis. This combined with careful elevation of the gluteal muscles off of the ilium (instead of splitting them) helps provide excellent and safe exposure of the entire rim of the acetabulum and access to the supracetabular region for bone grafting, acetabular augment placement and even fixation of the flanges of a cage.

A simple method for posterior column plating via the anterolateral approach involves contouring of the distal end of the plate around the base of the ischium at the inferior edge of the socket.

When an extended osteotomy of the femur is needed to correct deformity, remove a well-fixed implant or cement, the “extensile” variation of this same surgical approach involves a Wagner style (lateral to medial) osteotomy of the greater trochanter and proximal femur. The anterior portion of the femur after it is osteotomised is elevated as a separate segment while maintaining the soft tissue attachments to the bone as much as possible to aid osteotomy healing. After implant or cement removal, this approach gives excellent direct access to the distal femur for placement of a long stem revision femoral component without bone-implant conflict proximally because of the bow of the femur.

The anterolateral approach (and extensile variants detailed above) can be used routinely and safely in the full range of revision THA procedures, or it can be employed selectively, if desired, in cases at increased risk for dislocation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 57 - 57
1 Oct 2018
Noble PC Stephens S Mathis S Ismaily S Peters CL Berger RA Pulido-Sierra L Lewallen D Paprosky W Le D
Full Access

Introduction

The demands placed upon joint surgeons are perhaps greatest when treating the revision arthroplasty patient, who present with complications demanding skill in diagnosis and evaluation, interpersonal communication and the technical aspects of the revision procedure. However, little information exists identifying which specific tasks in revision arthroplasty are most difficult for surgeons to master, and whether the greatest challenges arise from clinical, cognitive or technical facets of patient treatment. This study was undertaken to identify which tasks associated with revision total knee replacement (TKR) are perceived as most challenging to young surgeons and trainees to guide future efforts in surgical training and curriculum development.

Methods

We developed an online survey instrument consisting of 69 items encompassing pre-operative, intraoperative, and post-operative tasks that preliminary studies identified as the essential components of revision TKR. These tasks encompassed 4 domains: clinical decision-making skills (n=9), interpersonal assessment and communication (n=7), surgical decision-making (n=35) and procedural surgical tasks (n=18). Respondents rated the difficulty of each item on a 5-level Likert scale, with an ordinal score ranging from 1 (“very easy”) to 5 (“very difficult”. The survey instrument was administered to a cohort of 109 US surgeons: 31 trainees enrolled in a joint fellowship program (Fellows) and 78 surgeons who had graduated from a joint fellowship program within the previous 10 years (Joint Surgeons). Using appropriate parametric and non-parametric tests, the responses were analyzed to examine the variation of reported difficulty of each of the 69 items, in addition to the nature of the task (cognitive, surgical, clinical and interpersonal), and differences between Fellows and Surgeons.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 23 - 23
1 Aug 2018
Sousa P Abdel M Francois E Hanssen A Lewallen D
Full Access

Highly porous tantalum cups have been used in complex acetabular revisions for nearly 20 years but reports of long term results are limited. This study was designed to report ten year results of revision using a single porous tantalum cup design with special attention to re-operation for any reason, all-cause revision, and revision for aseptic loosening.

Retrospective review of all revision THA cases performed from 1999–2006 using a highly porous tantalum acetabular component design with multiple screw holes and a cemented polyethylene liner (Zimmer Biomet, Warsaw, IN). Our institutional medical record and total joint registry were used to assess follow-up and xrays were reviewed. The Paprosky classification system was used to rate acetabular bone loss. Radiographic loosening was defined as new/progressive radiolucencies in all 3 acetabular zones, or cup migration (>2mm). Kaplan-Meier survivorship was used to assess survivorship free of cup revision/removal for any reason, and free of revision for aseptic loosening.

Between 1999 and 2006 this tantalum cup was used in 916 revisions. Mean age: 66 (±6), BMI: 29 (±6), and male: 42%. Indications for revision: aseptic loosening 346 (38%), osteolysis 240 (26%), and infected arthroplasty 168 (18%). Large (3A or 3B) bone defects were present in 260, and pelvic discontinuity in 61. Reoperation for any reason: 133 (15%), but 84 of 133 cases did not require cup revision for instability (38) or femoral failure (24). Tantalum cup removal/revision was required in 49 (5.3%) for deep infection (39) and recurrent dislocation (6), and aseptic loosening (4). 10 year survivorship free of cup revision for any reason: 95% and for aseptic loosening: 99%. Radiographic review (mean 10 years): suspicious for aseptic loosening in another 4 cups.

A highly porous tantalum acetabular component with multiple screws and a cemented polyethylene insert provided durable long term fixation for an array of acetabular revision problems. Long term aseptic loosening was very rare (<1%) and cup removal was mainly related to deep infection, and rarely dislocation.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 75 - 75
1 Jun 2018
Lewallen D
Full Access

Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral malrotation on an under-resected distal femur (in a knee with minimal arthritic wear to begin with) can contribute to corresponding tibial malrotation helped by a “floated” tibial trial on an all too often overly resected and downsloped tibial surface that has been recut to allow full extension with the under-resected femur (and now also results in AP laxity in flexion). Small changes in the alignment target will not fix this!

On the other hand: Kinematic alignment individualised to the patient's anatomy as a means of reducing soft tissue imbalance and minimizing ligamentous releases is actually a reasonable objective and a laudable goal on the surface. The problem with operationalizing this widely relates to what is currently required to try and reliably achieve this goal using currently available implants and technology. In the early 1980's the proponents of “anatomic” alignment with a residual 2- to 3-degree varus tibial resection and corresponding joint obliquity were Hungerford and Krackow. This concept was widely adopted but proved to be fraught with difficulty in the hands of community based surgeons in that era due to common excessive varus tibial resection errors and resulting premature implant failures. Recent reports on kinematic alignment involve a plethora of technology combinations including pre-operative CT (or MRI) for 3D reconstruction and planning, custom jig fabrication, and navigated bony preparation or individualised bony cuts off of patient specific jigs. The goal is to allow customised resections that “estimate” original cartilage thickness and bone erosion and seek to replicate the original however native anatomy and provide better precision for bone resection. Even when successful this is often followed by placement of a standard implant not too different from those in the 80's and 90's which may well have one femoral articular “J curve” for all patents, a single patellofemoral groove design and anatomic shape for all, and that makes use of a central keel on a nonanatomic tibial design with limited sizing increments, all implanted into a patient without an ACL and not infrequently PCL deficient as well. And all of this is done with the hope of restoring the normal original knee kinematics!

The frequent combination of several of the above factors clinically in a single knee may help explain some of the variability in results of kinematic alignment reported by some authors even after excluding certain pre-operative deformities (excess valgus or varus).

For now mechanical alignment methods and instrumentation should remain the standard of care for routine TKA practice for most, and in complex primary cases for all.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 39 - 39
1 Jan 2018
Houdek M Wyles C Jannetto P Berry D Lewallen D
Full Access

Serum and blood cobalt (Co) and chromium (Cr) ion levels are used to monitor patients at risk for adverse reaction to metal debris (ARMD) following metal-on-metal (MoM) total hip arthroplasty (THA). However, these levels often do not correlate with the degree of local soft-tissue reaction and damage observed at the time of revision. The purpose of this study was to analyze synovial fluid metal ion concentrations in patients with a failed THA in the setting of an ARMD and determine if these levels can be more predictive of soft-tissue destruction than serum or whole blood levels.

Synovial, blood and serum samples were prospectively collected from patients undergoing revision THA with ARMD (n=29) and those undergoing aseptic revision without ARMD (n=29). There was no difference in mean age (P=0.50), BMI (P=0.18), sex distribution (P=0.18), serum creatinine (P=0.74), or time to revision THA (P=0.13) between the cohorts.

In the AMRD cohort, the components included MoM THA (n=18), hip resurfacing (n=5), dual-modular taper THA (n=4) and MoM and dual-modular taper THA (n=2). At the time of revision THA, 26 (90%) patients in the metal reaction cohort had gross evidence of metallosis in the soft-tissues, the remaining 3 (10%) had evidence of corrosion of the dual taper neck or MoM bearing. In the non ARMD cohort the bearing surfaces included metal-on-polyethylene (n=19) and ceramic-on-polyethylene (n=10). The indications for revision included isolated acetabular loosening (n=11), isolated femoral component loosening (n=11), polyethylene wear (n=5), recurrent dislocation (n=1) and combined femoral and acetabular component loosening (n=1). None had a clinical diagnosis or gross evidence of taper corrosion. Pre-revision, 21 (72%) patients in the metal reaction group had periarticular fluid collections or a mass on MRI. Mean cyst size was 202.9±71.6 cm3 and masses were grouped into Type I (cyst wall <3 mm, n=10), Type II (cyst wall ≥3 mm, n=8) and Type III (mainly solid, n=3).

At the time of revision THA, the mean Co levels were elevated in patients with ARMD compared to those without in synovial fluid (1,833 ppb vs. 12.3 ppb, P=0.008), whole blood (22.6 ppb vs 0.5 ppb, P=0.005)) and serum (19.6 vs. 0.6, P=0.001). Likewise, mean Cr levels were significantly elevated in patients with an ARMD compared to those undergoing revision without in synovial fluid (3,128 ppb vs. 10.3 ppb, P=0.01), whole blood (8.9 ppb vs. 0.5 ppb, P=0.009) and serum (14.1 ppb vs. 0.5 ppb, P=0.005). The synovial fluid Co levels were the most accurate test for detecting pseudotumor (AUC 0.951) and adverse local tissue reaction (AUC 0.826). At a synovial fluid Cr level of 110 ppb, the synovial fluid metal ion analysis was 94% sensitive and 86% specific for pseudotumor formation.

In this prospective study, synovial fluid analysis of metal ion levels was more accurate in predicting the presence and extent of pseudo-tumor or ALTR compared to blood or serum analysis. The addition of synovial aspiration with metal ion analysis may provide another helpful data point when risk stratifying these patients for need for revision THA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 99 - 99
1 Aug 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring.

Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided.

From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic and clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. Three separate patterns of augment placement were utilised: Type 1 - augment screwed onto the superolateral acetabular rim (21%), Type 2 – augment fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect (34%), and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial medial wall (45%). At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity.

Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 68 - 68
1 Aug 2017
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft.

Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Large prosthetic augments (cones); 7) Massive structural allograft-prosthetic composites (APC); 8) Custom implants. Maximizing support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Pre-operative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the pre-operative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intra-operative findings such as occult fracture through deficient periprosthetic bone.

Reconstruction of bone deficiency following removal of the failed implant is largely dictated by the location and extent of bone loss and the quality of bone that remains. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions the degree of implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects especially of the cavitary sort may be well managed with minimal constraint.

Highly porous metal augments designed to reestablish metaphyseal support and function in the manner of a prosthetic structural graft have been introduced or are under development by several manufacturers. Published reports of short term experiences have been encouraging for both the tibial side and for femoral augmentation. It remains to be seen whether these implants will provide the desired longer term durability.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 112 - 112
1 Apr 2017
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft.

Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Large prosthetic augments (cones); 7) Massive structural allograft-prosthetic composites (APC); 8) Custom implants. Maximizing support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Pre-operative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the pre-operative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intra-operative findings such as occult fracture through deficient periprosthetic bone.

Reconstruction of bone deficiency following removal of the failed implant is largely dictated by the location and extent of bone loss and the quality of bone that remains. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions the degree of implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects especially of the cavitary sort may be well managed with minimal constraint.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 57 - 57
1 Apr 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring.

Technique: Three separate patterns of augment placement have been utilised in our practice since the development of these implants: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely.

Results: From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of 1,789 revision hip cases performed at our institution in that time frame. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic as well as clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity.

Summary: Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 12 - 12
1 Apr 2017
Lewallen D
Full Access

For primary hip arthroplasty contemporary acetabular component options available from across multiple manufacturers have evolved over the years to provide several common and widely available features and a few unique options designed to address the main clinical problems that have plagued hip arthroplasty in the past. These include the main causes of failure of THA generally, and of acetabular components in particular: fixation, wear, instability, and infection. The design and implant options that have been made available vary in how effectively they have “solved” the problem in question and occasionally have created new problems or have been associated with major tradeoffs and disadvantages.

Fixation: Cementless fixation of the socket has largely supplanted cemented fixation in North America. First generation ingrowth materials for cementless sockets including beads, plasma spraying, and wire mesh, have given way to enhanced more highly porous materials. The advent of rapid prototyping and 3-D printing of highly porous titanium (and other) materials has sparked a wave of various new orthopaedic implant designs including for the acetabulum.

Wear: Polyethylene wear and the resulting osteolysis problems seen in hip arthroplasty in the 1980's and 90's spawned a competition between 3 technologies over the optimal enhanced wear couple for THA: Metal-on-Metal (MOM), Ceramic-on-Ceramic, and Metal/Ceramic-on-Highly Crosslinked Polyethylene. Metal-on-Metal surface replacement and MOM THA were designed to reduce wear and also allow very large heads and potentially enhanced hip stability. Unfortunately, after wide adoption, subsequent problems occurred and this ongoing disaster has resulted in the rapid disappearance of virtually all MOM designs. Ceramic-on-Ceramic articulations achieve very low wear rates, but with lower tolerances for imperfect implant positioning. The potential for stripe wear, audible squeaking, rare breakage problems, and much greater expense have limited usage in the US, though this articulation is still preferred by some surgeons for selected very young patients. Ceramic- or Chrome Cobalt-on-Highly Crosslinked Polyethylene has emerged as the most widely used articulation in the US and has excellent wear performance with no demonstrable osteolysis over the first decade. More recent modifications of crosslinking methods and use of Vitamin E as an antioxidant, it is hoped, will further improve wear performance and mechanical properties.

Instability: Instability of the hip (subluxation or frank dislocation) remains one of the most common complications of THA, especially early. Acetabular component and insert options available to prevent instability (or treat it in the revision setting) include: 1) Optimal cup version and inclination (so called “safe zone”); 2) Prevent femoral component impingement against socket or liner rim; 3) Face changing elevated liner; 4) Liner to allow large fixed head (32 mm or > depending on cup size); 5) Dual mobility liner; 6) Tripolar construct (small bipolar inside a matched liner for a 40 mm or larger head); 7) Constrained liner (various designs).

Infection: There are currently a very limited number of acetabular component or liner options available to attempt to reduce the risk of infection or assist as adjunctive measures in treating the infected arthroplasty, but this is an area of active research and implant design effort.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 58 - 58
1 Dec 2016
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented highly porous ingrowth acetabular components can be used for the reconstruction of the vast majority of revision cases, especially where small to mid-sized segmental or cavitary defects are present which do not compromise stable mechanical support by the host bone for the cup after bone preparation is complete. A mechanically stable and near motionless interface between the host bone and the implant is required over the initial weeks post-surgery for bone ingrowth to occur, regardless of the type of porous surface employed. As bone deficiency increases, the challenge of achieving rigid cup fixation also increases, especially if the quality of the remaining host bone is compromised. A stepwise approach to enhanced fixation of the highly porous revision acetabular component is possible as follows:

Maximise Screw Fixation. Use of a limited number of screws in the dome only (as routinely occurs with a cluster hole design) is inadequate, except for primary arthroplasty cases or very routine revision cases with little or no bone loss and good bone quality. Otherwise an array of screws across the acetabular dome and continuing around the posterior column to base of the ischium is strongly recommended. This can help prevent early rocking of the cup into a more vertical position due to pivoting on dome screws used alone, via cup separation inferiorly in zone 3. A minimum of 3 or 4 screws in a wide array are suggested and use of 6 or more screws is not uncommon if bone quality is poor or defects are large.

Cement the Acetabular Liner into the Shell. This creates a locking screw effect, which fixes the screw heads in position and prevents any screws from pivoting or backing out.

Acetabular Augments (vs Structural Allograft). When critical segmental defects are present which by their location or size preclude stable support of the cup used alone, either a structural allograft or highly porous metal augment can provide critical focal support and enhance fixation. Highly porous metal augments were initially developed as a prosthetic allograft substitute in order to avoid the occasional graft resorption and loss of fixation sometimes seen with acetabular allograft use.

Cup-Cage Construct. If one or more of the above strategies are used and fixation is deemed inadequate, it is possible to add a ½ or full acetabular cage “over the top” of the acetabular component before cementing a polyethylene liner in place. The full cup cage construct can be used for maximal fixation in cases of pelvic dissociation, alone or in combination with the distraction method as described by Paprosky. Use of a ½ cage is technically simpler and requires less exposure than a full cage, but still greatly enhances rigidity of fixation when transverse screws into the ilium are combined with standard screws in the cup including vertically into the dome.

These techniques used in combination with highly porous tantalum implants have allowed durable fixation for the full range of reconstructive challenges and bone defects encountered. Newer 3-D printed titanium highly porous materials have recently been introduced by multiple manufacturers as a potential alternative that may be more cost effective, but these implants and materials will require clinical validation over the years ahead.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 102 - 102
1 Dec 2016
Lewallen D
Full Access

Total knee replacement (TKR) is one of the most successful procedures in orthopaedic surgery. Although originally limited to more elderly and less active individuals, the inclusion criteria for TKR have changed, with ever younger, more active and heavier patients receiving TKR. Currently, wear debris related osteolysis and associated prosthetic loosening are major modes of failure for TKR implants of all designs. Initially, tibial components were cemented all polyethylene monoblock constructs. Subsequent long-term follow-up studies of these implants have demonstrated excellent durability in survivorship studies out to twenty years. Aseptic loosening of the tibial component was one of the main causes of failure in these implants. Cemented metal-backed nonmodular tibial components were subsequently introduced to allow for improved tibial load distribution and to protect osteoporotic bone. Long-term studies have established that many one-piece nonmodular tibial components have maintained excellent durability. Eventually, modularity between the polyethylene tibial component and the metal-backed tray was introduced in the mid-80s mainly to facilitate screw fixation for cementless implants. These designs also provided intraoperative versatility by allowing interchange of various polyethylene thicknesses, and to also aid the addition of stems and wedges. Other advantages included the reduction of inventory, and the potential for isolated tibial polyethylene exchanges as a simpler revision procedure. However, several studies have documented the high failure rate of isolated polyethylene exchange procedures, probably because technical problems related to the original components are left uncorrected. Since the late 1980s, the phenomena of polyethylene wear and osteolysis have been observed much more frequently when compared with earlier eras. The reasons for this increased prevalence of synovitis, progressive osteolysis, and severe polyethylene wear remain unclear, but there is no question that it was associated with the widespread use of both cementless and cemented modular tibial designs.

Mayo Data

The study population included 10,601 adult patients with 14,524 primary TKA procedures performed at our institution between 1/1/1988 and 12/31/2005. Mean age was 68.7 years and 55% were female. Overall revision rates and revisions for loosening, wear/osteolysis were compared across different designs. Over an average 9 year follow-up, a total of 865 revisions, including 252 tibia revisions were performed, corresponding to overall survival of 89% (Confidence intervals (CI): 88%, 90%) at 15 years. In comparison to metal modular designs, risk of tibial revision was significantly lower with all-poly tibias (HR 0.3, 95% CI: 0.2, 0.5). Overall, posterior cruciate-retaining designs performed better than the posterior-stabilised designs (p=0.002). With any revision as the endpoint, there were no significant differences across the 18 designs examined. Similarly, there were no significant differences across the 18 designs when we considered revisions for aseptic loosening, wear, and osteolysis. Among patient characteristics, male gender, younger age, and higher BMI were all significantly associated with higher risk of revisions (p<0.008).

Summary

Available data support the use of nonmodular tibial designs in TKA in order to prevent or reduce the chance of backside wear, third body particles from resulting metallic debris and associated polyethylene induced osteolysis. In all patients, (not just older individuals) use of an all polyethylene tibial component is an attractive and more cost effective alternative, and is associated with the best survivorship and lowest risk of revision.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 84 - 84
1 Dec 2016
Lewallen D
Full Access

Two stage exchange treatment of the infected TKA involves two separate surgical procedures separated by an interval of several weeks of pathogen specific antibiotic therapy.

The first stage involves removal of all of the infected arthroplasty components and any cement or foreign material, followed by aggressive debridement of nonviable bone and soft tissues. This is followed by placement of an antibiotic-laden spacer which may be either static (molded solid PMMA block) or mobile (shaped blocks or implants that allow knee motion). With both static and mobile spacers high local doses of antibiotic are delivered from the cement in addition to systemic antibiotic therapy usually employing an IV for around 6 weeks post debridement. The choice between static and mobile spacers is dictated by surgeon preference, soft tissue status (i.e. need for adjunctive muscle flaps), and by the severity of bone loss present with static spacers more likely to be used for more major soft tissue or bone defect cases. Mobile spacers have the advantage of allowing interval motion of the knee which may improve final range of motion. Static spacers usually require adjunctive brace or cast immobilization to prevent migration and bone damage.

The second stage is performed at around 6 to 8 weeks after completion of systemic antibiotic therapy and preferably after normalization (or improvement) in laboratory indicators such as ESR and CRP. Routine repeat aspiration of all knees before reimplantation is not usual, but selective aspiration for culture may be helpful if concern exists that infection may still be present due to systemic signs, wound appearance or abnormal laboratory parameters. The second stage procedure involves removal of the antibiotic-laden spacer, repeat complete debridement of the knee, and insertion of revision knee components. Frequently adjunctive stems, blocks, cones or sleeves are needed to achieve adequate implant fixation due to associated bone loss. Careful attention to soft tissue balancing is required at the time of reimplantation in order to optimise motion and function while also avoiding laxity or maltracking.

Two stage exchange remains the gold standard in North America for the management of infected TKA. While this method is used by some surgeons for all chronically infected TKA patients, it is employed even by most one stage exchange devotees when the infecting organism is unknown, infection involves a highly resistant or difficult to manage pathogen (i.e. fungal), is associated with a sinus track or marginal soft tissues, or in many cases of immunocompromised patients or those with multiple comorbidities.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 100 - 100
1 Nov 2016
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring.

Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 – augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided.

Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller (often female) patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult in small patients with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 65 - 65
1 Nov 2016
Lewallen D
Full Access

Instability currently represents one of the main causes of residual pain and symptoms following TKA and thus is a major cause of revision total knee replacement, second only to component loosening in some series. Instability related to ligamentous laxity can be categorised by the pattern of relative laxity of the soft tissue structures and this in turn helps in determination of the bony alignment issue, component sizing or positioning problem or ligamentous abnormality that may be contributory and require correction. Instability patterns associated with TKA can be symmetrical and global type instability where there is laxity in all planes, and can also more commonly be asymmetrical or isolated laxity problems where there is good stability in some planes or positions of the knee but excessive laxity in at least one direction. Isolated laxity problems can be subcategorised into one of 3 patterns: Extension instability, Flexion instability, and Recurvatum. Global laxity can occur due to inadequate tibial component thickness, or globally incompetent soft tissues, and can present initially after TKA or alternatively can present late from slow stretch of soft tissues over time as can be seen with some pathologic states.

Asymmetrical or Isolated laxity occurs in the sagittal plane when medial vs. lateral “gaps” are unequal and may be due to contracture of tight structures either medially or laterally or can be due to insufficiency or injury of the ligamentous structures on one side vs. the normal structures on other side. Occasionally there is a combination of both contracture on one side and attenuation/stretch on the other side as seen in some patients with severe long standing genu varum or genu valgum. Asymmetrical laxity in the frontal plane generally results in unequal extension vs. flexion “gaps”. This can cause either anteroposterior laxity in flexion but full extension with good stability or alternatively, there may be AP stability in flexion but a lack of full extension in the presence of the exact same pattern of imbalance when a “too thick” polyethylene insert is used to correct what would otherwise be flexion instability. In both cases, the extension gap is tighter than the flexion gap. Isolated recurvatum occurs when the posterior capsular structures are relatively lax or deficient so that a knee that is otherwise stable in the medial-lateral plane in extension, and is stable in the AP plane when in flexion, hyperextends in the fully extended position. In any TKA procedure (but especially revision for instability) it is critical to understand the effect of selected bone resection (or build ups) on soft tissue balancing in order to avoid or treat ligamentous laxity: distal femur – effects extension gap only; posterior femur – effects flexion gap only; proximal tibia – both flexion and extension spaces.

During revision for instability, careful evaluation of the cause of the laxity and failure is critically important, especially if there is associated axial deformity or malalignment which generally must be corrected for any reconstruction or revision components to work. Most knees revised for instability issues will require a posterior stabilised or constrained condylar design. Constrained condylar implants are used to compensate for residual medial-lateral imbalance still present after standard soft tissue releases medially (subperiosteal tibia) or laterally (vis selective pie-crust method). However, if the patient displays residual major medial-lateral or global instability that cannot be corrected, or when there is an excessive flexion gap that cannot be stabilised with maximal allowable component sizing, a rotating hinge constrained total knee replacement design may be required. Recent data has shown that rotating hinges can work reliably in restoring stability to the knee in such cases with satisfactory durability and clinical results over time.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1180 - 1184
1 Sep 2016
Watts C Martin JR Houdek M Abdel M Lewallen D Taunton M

Aims

We compared the outcome of total hip arthroplasty (THA) in obese patients who previously underwent bariatric surgery and those who did not, in a matched cohort study.

Patients and Methods

There were 47 THAs in the bariatric group (42 patients), and 94 THAs in the comparison group (92 patients). The mean age of the patients was 57 years in both groups (24 to 79) and 57% of the patients in both groups were women. The mean time between bariatric surgery and THA was five years (four months to 12 years) in the bariatric group. The mean follow-up after THA was three years (2 to 9).


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 68 - 68
1 Nov 2015
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating pre-operative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft.

Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Large prosthetic augments (cones); 7) Massive structural allograft-prosthetic composites (APC); 8) Custom implants. Maximizing support on intact host bone is a fundamental principle to successful reconstruction and frequently requires extending fixation to the adjacent diaphysis. Pre-operative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the pre-operative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intra-operative findings such as occult fracture through deficient periprosthetic bone.

Reconstruction of bone deficiency following removal of the failed implant is largely dictated by the location and extent of bone loss and the quality of bone that remains. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions the degree of implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects especially of the cavitary sort may be well managed with minimal constraint.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 36 - 36
1 Nov 2015
Lewallen D
Full Access

Limb deformity is common in patients presenting for knee arthroplasty, either related to asymmetrical wear patterns from the underlying arthritic process (intra-articular malalignment) or less often major extra-articular deformity due to prior fracture malunion, childhood physical injury, old osteotomy, or developmental or metabolic disorders such as Blount's disease or hypophosphatemic rickets. Angular deformity that is above the epicondyles or below the fibular neck may not be easily correctable by adjusted bone cuts as the amount of bone resection may make soft tissue balancing impossible or may disrupt completely the collateral ligament attachments.

Development of a treatment plan begins with careful assessment of the malalignment which may be mainly coronal, sagittal, rotational or some combination. Translation can also complicate the reconstruction as this has effects directly on location of the mechanical axis.

Most intra-articular deformities are due to the arthritic process alone, but may occasionally be the result of intra-articular fracture, periarticular osteotomy or from prior revision surgery effects. While intra-articular deformity can almost always be managed with adjusted bone cuts it is important to have available revision type implants to enhance fixation (stems) or increase constraint when ligament balancing or ligament laxity is a problem.

Extra-articular deformities may be correctable with adjusted bone cuts and altered implant positioning when the deformity is smaller, or located a longer distance from the joint.

The effect of a deformity is proportional to its distance from the joint. The closer the deformity is to the joint, the greater the impact the same degree angular deformity will have. In general deformities in the plane of knee are better tolerated than sagittal plane (varus/valgus) deformity.

Careful pre-operative planning is required for cases with significant extra-articular deformity with a focus on location and plane of the apex of the deformity, identification of the mechanical axis location relative to the deformed limb, distance of the deformity from the joint, and determination of the intra-articular effect on bone cuts and implant position absent osteotomy.

In the course of pre-operative planning, osteotomy is suggested when there is inability to correct the mechanical axis to neutral without excessive bone cuts which compromise ligament or patellar tendon attachment sites, or alternatively when adequate adjustment of cuts will likely lead to excessive joint line obliquity which can compromise ability to balance the soft tissues.

When chosen, adjunctive osteotomy can be done in one-stage at the time of TKA or the procedures can be done separately in two stages.

When simultaneous with TKA, osteotomy fixation options include long stems added to the femoral (or tibial) component for intramedullary fixation, adjunctive plate and screw fixation, and antegrade (usually locked) nailing for some femoral osteotomies. Choice of fixation method is often influenced by specific deformity size location, bone quality and amount, and surgeon preference. Surgical navigation, or intra-operative x-ray imaging methods (or both) have both been used to facilitate accurate correction of deformity in these complex cases.

When faced with major deformity of the femur or tibia, with careful planning combined osteotomy and TKA can result in excellent outcomes and durable implant fixation with less constraint, less bone loss, and better joint kinematics than is possible with modified TKA alone.