header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 38 - 38
1 Apr 2022
Plastow R Kayani B Paton B Moriarty P Wilson M Court N Giakoumis M Read P Kerkhoffs G Moore J Murphy S Pollock N Stirling B Tulloch L Van Dyk N Wood D Haddad FS
Full Access

The 2020 London International Hamstring Consensus meeting was convened to improve our understanding and treatment of hamstring injuries.

The multidisciplinary consensus panel included 14 International specialists on the management of hamstring injuries. The Delphi consensus process consisted of two rounds of surveys which were completed by 19 surgeons from a total of 106 participants. Consensus on individual statements was regarded as over 70% agreement between panel members.

The consensus group agreed that the indications for operative intervention included the following: gapping at the zone of injury (86.9%); high functional demands of the patient (86.7%); symptomatic displaced bony avulsions (74.7%); and proximal free tendon injuries with functional compromise refractory to non-operative treatment (71.4%). Panel members agreed that surgical intervention had the capacity to restore anatomy and function, while reducing the risk of injury recurrence (86.7%). The consensus group did not support the use of corticosteroids or endoscopic surgery without further evidence.

These guidelines will help to further standardise the treatment of hamstring injuries and facilitate decision-making in the surgical treatment of these injuries.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 72 - 72
1 Mar 2021
Kok A den Dunnen S Lamberts K Kerkhoffs G Tuijthof G
Full Access

Surgical microfracture is considered a first line treatment for talar osteochondral defects. Pain reduction, functional improvement and patient satisfaction are described to be 61–86% in both primary and secondary osteochondral defects. However, limited research is available whether improvement of the surgical technique is possible. We do know that the current rigid awls and drills limit the access to all locations in human joints and increase the risk of heat necrosis of bone. Application of a flexible water jet instrument to drill the microfracture holes can improve the reachability of the defect without inducing thermal damage. The aim of this study is to determine whether water jet drilling is a safe alternative compared to conventional microfracture awls by studying potential side effects and perioperative complications, as well as the quality of cartilage repair tissue in a caprine model. 6 mm diameter talar chondral defects were created bilaterally in 6 goats (12 samples). One defect in each goat was treated with microfracture holes created with conventional awls. The contralateral defect was treated with holes created with 5 second water jet bursts at a pressure of 50 MPa. The pressure was generated with a custom-made setup using an air compressor connected to a 300 litre accumulator that powered an air driven high-pressure pump (P160 Resato, Roden, The Netherlands, www.resato.com). Postoperative complications were recorded. After 24 weeks, analyses were performed using the ICRS macroscopic score and the modified O'Driscoll histological score. Wilcoxon ranked sum tests were used to assess significant differences between the two instrument groups using each goat as its own control (p ≤ 0.05). One postoperative complication was signs of a prolonged wound healing with swelling and reluctance to weight bearing starting two days after surgery on the water jet side. Antibiotics were administered which resolved the symptoms. The median total ICRS score for the tali treated with water jets was 9,5 (range: 6–12) and 9 (range 2–11) for Observer 1 and 2 respectively; and for the tali treated conventionally this was 9,5 (range 5–11) and 9 range (2–10). The median total Modified O'Driscoll score for the tali treated with water jets was 15 (range: 7–17) and 13 (range: 3–20) for Observer 1 and 2 respectively; and for the tali treated conventionally was 13 (range: 11–21) and 15 (range: 9–20). No differences were found in complication rate or repair tissue quality between the two techniques. The results suggest that water jet drilling can be a safe alternative for conventional microfracture treatment. Future research and development will include the design of an arthroscopic prototype of the water jet drill. The focus will be on stability in nozzle positioning and minimized sterile saline consumption to further the decrease the risk of soft tissue damage.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 26 - 26
1 Apr 2018
Rustenburg C Blom R Stufkens S Kerkhoffs G Emanuel K
Full Access

Background

Ankle fractures are often associated with ligamentous injuries of the distal tibiofibular syndesmosis, the deltoid ligament and are predictive of ankle instability, early joint degeneration and long-term ankle dysfunction. Detection of ligamentous injuries and the need for treatment remain subject of ongoing debate. In the classic article of Boden it was made clear that injuries of the syndesmotic ligaments were of no importance in the absence of a deltoid ligament rupture. Even in the presence of a deltoid ligament rupture, the interosseous membrane withstood lateralization of the fibula in fractures up to 4.5mm above the ankle joint. Generally, syndesmotic ligamentous injuries are treated operatively by temporary fixation performed with positioning screws. But do syndesmotic injuries need to be treated operatively at all?

Methods

The purpose of this biomechanical cadaveric study was to investigate the relative movements of the tibia and fibula, under normal physiological conditions and after sequential sectioning of the syndesmotic ligaments. Ten fresh-frozen below-knee human cadaveric specimens were tested under normal physiological loading conditions. Axial loads of 50 Newton (N) and 700N were provided in an intact state and after sequential sectioning of the following ligaments: anterior-inferior tibiofibular (AITFL), posterior-inferior tibiofibular (PITFL), interosseous (IOL), and whole deltoid (DL). In each condition the specimens were tested in neutral position, 10 degrees of dorsiflexion, 30 degrees of plantar flexion, 10 degrees of inversion, 5 degrees of eversion, and externally rotated up to 10Nm torque. Finally, after sectioning of the deltoid ligament, we triangulated Boden's classic findings with modern instruments. We hypothesized that only after sectioning of the deltoid ligament; the lateralization of the talus will push the fibula away from the tibia.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 149 - 149
1 Sep 2012
Van Bergen C Özdemir M Kerkhoffs G Korstjens C Van Ruijven L Everts V Van Dijk C Blankevoort L
Full Access

Introduction

Osteochondral defects (OCDs) of the talus are treated initially by arthroscopic bone marrow stimulation. For both large and secondary defects, current alternative treatment methods have disadvantages such as donor site morbidity or two-stage surgery. Demineralized bone matrix (DBM) was published for the treatment of OCDs of rabbit knees. Autologous platelet-rich plasma (PRP) may improve the treatment effect of DBM. We previously developed a goat model to investigate new treatment methods for OCDs of the talus. The aim of the current study was to test whether DBM leads to more bone regeneration than control OCDs, and whether PRP improves the effectiveness of DBM.

Methods

A standardized 6-mm OCD was created in 32 ankles of 16 adult Dutch milk goats. According to a randomized schedule, 8 goats were treated with commercially available DBM (Bonus DBM, Biomet BV, Dordrecht, the Netherlands) hydrated with normal saline, and 8 were treated with the same DBM but hydrated with autologous PRP (DBM+PRP). The contralateral ankles (left or right) were left untreated and served as a control. The goats were sacrificed after 24 weeks and the tali were excised. The articular talar surfaces were assessed macroscopically using the international cartilage repair society (ICRS) cartilage repair assessment, with a maximum score of 12. Histologic analysis was performed using 5-μm sections, and histomorphometric parameters (bone% and osteoid%) were quantified on representative areas of the surface, center, and peripheral areas of the OCDs. Furthermore, μCT-scans of the excised tali were obtained, quantifying the bone volume fraction, trabecular number, trabecular thickness, and trabecular spacing in both the complete OCDs and the central 3-mm cylinders.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 233 - 233
1 Sep 2012
Van Bergen C Tuijthof G Blankevoort L Maas M Kerkhoffs G Van Dijk C
Full Access

PURPOSE

Osteochondral talar defects (OCDs) are sometimes located so far posteriorly that they may not be accessible by anterior arthroscopy, even with the ankle joint in full plantar flexion, because the talar dome is covered by the tibial plafond. It was hypothesized that computed tomography (CT) of the ankle in full plantar flexion could be useful for preoperative planning. The dual purpose of this study was, firstly, to test whether CT of the ankle joint in full plantar flexion is a reliable tool for the preoperative planning of anterior ankle arthroscopy for OCDs, and, secondly, to determine the area of the talar dome that can be reached by anterior ankle arthroscopy.

METHODS

In this prospective study, CT-scans with sagittal reconstructions were made of 46 consecutive patients with their affected ankle in full plantar flexion. In the first 20, the distance between the anterior border of the OCD and the anterior tibial plafond was measured both on the scans and during anterior ankle arthroscopy as the gold standard. Intra- and interobserver reliability of CT as well as agreement between CT and arthroscopy were assessed by intraclass correlation coefficients (ICCs) and a Bland and Altman graph. Next, the anterior and posterior borders of the talar dome as well as the anterior tibial plafond were marked on all 46 scans. Using a specially written computer routine, the anterior proportion of the talar dome not covered by the tibial plafond was calculated, both lateral and medial, indicating the accessible area.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 104 - 104
1 May 2011
Doornberg J Rademakers M Van Den Bekerom M Kerkhoffs G Ahn J Steller E Kloen P
Full Access

Background: Complex fractures of the tibial plateau can be difficult to characterize on plain radiographs and two-dimensional computed tomography scans. We tested the hypothesis that three-dimensional computed tomography reconstructions improve the reliability of tibial plateau fracture characterization and classification.

Methods: Forty-five consecutive intra-articular fractures of the tibial plateau were evaluated by six independent observers for the presence of six fracture characteristics that are not specifically included in currently used classification schemes:

posteromedial shear fracture;

coronal plane fracture;

lateral condylar impaction;

medial condylar impaction;

tibial spine involvement;

separation of tibial tubercle necessitating anteroposterior lag screw fixation.

In addition, fractures were classified according to the AO/OTA Comprehensive Classification of Fractures, the Schatzker classification system and the Hohl and Moore system. Two rounds of evaluation were performed and then compared. First, a combination of plain radiographs and two-dimensional computed tomography scans (2D) were evaluated, and then, four weeks later, a combination of radiographs, two-dimensional computed tomography scans, and three-dimensional reconstructions of computed tomography scans (3D) were assessed.

Results: Interobserver agreement improved for all classification systems after the addition of three-dimensional reconstructions (AO/OTA κ2D = 0.536 versus κ3D = 0.545; Schatzker κ2D = 0.545 versus κ3D = 0.596; Hohl and Moore κ2D = 0.668 versus κ3D = 0.746).

Three-dimensional computed tomography reconstructions also improved the average intraobserver reliability for all fracture characteristics, from κ2D = 0.624 (substantial agreement) to κ3D = 0.687 (substantial agreement). The addition of three-dimensional images had limited infiuence on the average interobserver reliability for the recognition of specific fracture characteristics (κ2D = 0.488 versus κ3D = 0.485, both moderate agreement). Three-dimensional computed tomography images improved interobserver reliability for the recognition of coronal plane fractures from fair (κ2D = 0.398) to moderate (κ3D = 0.418) but this difference was not statistically significant.

Conclusions: Three-dimensional computed tomography is helpful for;

individual orthopaedic surgeons for preoperative planning (improves intraobserver reliability for the recognition of fracture characteristics), and for

comparison of clinical outcomes in the orthopaedic literature (improves interobserver reliability of classification systems).