header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 9 - 9
1 Dec 2020
Meermans G Kats J Doorn JV Innman M Grammatopoulos G
Full Access

Introduction

In total hip arthroplasty, a high radiographic inclination angle (RI) of the acetabular component has been linked to short- and long-term complications. There are several factors that lead to RI outliers including cup version, pelvic orientation and angle of the cup introducer relative to the floor. The primary aim of this study was to analyse what increases the risk of having a cup with an RI outside the target zone when controlling cup orientation with a digital inclinometer.

Methods

In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target intraoperative inclination (IOItarget). The intra-operative inclination of the cup (IOIcup) was measured with the aid of a digital inclinometer after seating of the acetabular component. Anteroposterior pelvic radiographs were made to measure the RI of the acetabular component. The target zones were defined as 30°-45° and 35°-45° of RI. The operative inclination relative to the sagittal plane of the pelvis (OImath) was calculated based on the radiographic inclination and anteversion angle. The difference between two outcome measures was expressed as Δ.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 41 - 41
1 Jun 2017
Meermans G Van Doorn J Kats J
Full Access

The orientation of the acetabular component is influenced by the orientation at which the surgeon implants the component and the orientation of the pelvis at the time of implantation. When operating with the patient in the lateral decubitus position, pelvic orientation can be highly variable. The goal of this study was to examine the effect of two different pelvic supports on cup orientation.

In this prospective study, 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position were included. In the control group a single support over the pubic symphysis (PS) was used. In the study group, a single support over the ipsilateral anterior superior iliac spine (ASIS) was used. In every patient, the cup was inserted and the angle of the cup introducer relative to the floor (apparent operative inclination; OIa) was measured with the aid of a digital inclinometer. The radiographic inclination (RI) was measured on anteroposterior pelvic radiographs at 6 weeks postoperatively. The target zone for cup inclination was 35–45°.

In both cohorts the cups were implanted close to the target OIa with an absolute difference with the OIa of 0.86° SD 0.82 in the PS cohort and 1.03° SD 0.99 in the ASIS cohort (p=0.18). The difference between the RI and OIa was higher in the PS cohort 12.2° SD 4.1 compared with 7.5° SD 3.7 in the ASIS cohort (p<0.0001) with also a bigger variance (p=0.04) in the PS cohort. The mean RI was 38.5° SD 4.4 compared with 39.2° SD 4.1 (p=0.26) respectively. There were more cups outside the RI target zone in the PS cohort compared with the ASIS cohort (respectively 26 versus 15; p<0.05).

In this study the mean difference between the RI and OIa (the angle of the cup introducer during surgery) was significantly less when using a support over the ASIS compared with a support over the pubic symphysis. Apparently using a support over the ASIS causes less pelvic motion during surgery compared with a support over the pubic symphysis. This resulted in less variance and inclination outliers when using a tight target zone of 35–45°.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1597 - 1603
1 Dec 2016
Meermans G Doorn JV Kats J

Aims

One goal of total hip arthroplasty is to restore normal hip anatomy. The aim of this study was to compare displacement of the centre of rotation (COR) using a standard reaming technique with a technique in which the acetabulum was reamed immediately peripherally and referenced off the rim.

Patients and Methods

In the first cohort the acetabulum was reamed to the floor followed by sequentially larger reamers. In the second cohort the acetabulum was only reamed peripherally, starting with a reamer the same size as the native femoral head. Anteroposterior pelvic radiographs were analysed for acetabular floor depth and vertical and horizontal position of the COR.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 12 - 12
1 Jun 2016
Meermans G Peeters W Van Doorn W Kats J
Full Access

Introduction

In total hip arthroplasty (THA), a high radiographic inclination angle (RI) of the acetabular component has been linked to an increased dislocation rate, liner fracture, and increased wear. In contrast to version, we have more proven boundaries when it comes to a safe zone for angles of RI. Although intuitively it seems easier to achieve a target RI, most studies demonstrate a lack of accuracy and the trend towards a high RI with all surgical approaches when using a freehand technique or a mechanical guide. This is due to pelvic motion during surgery, which can be highly variable.

The current study had two primary aims, each with a different primary outcome. The first aim was to determine how accurate a surgeon could obtain the target operative inclination (OI) during THA when using a cementless cup using a digital protractor. The second aim was to determine how accurate a surgeon can estimate the target OI to obtain a RI of 40° based on the patient's hip circumference as demonstrated in a previous study.

Methods

In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target OI based on the patient's hip circumference (22.5°, 25°, 27.5° or 30°). Intraoperatively, the effective OI was measured with the aid of a digital inclinometer after seating of the acetabular component. Six weeks postoperatively anteroposterior pelvic radiographs were made and two evaluators, blinded to the effective OI, measured the RI of the acetabular component. The safe zone for inclination was defined as 30°-45° of inclination.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 33 - 33
1 Nov 2015
Meermans G Goetheer-Smits I Lim R Van Doorn J Kats J
Full Access

Introduction

A high inclination angle has been linked to an increased dislocation rate, liner fracture, and increased wear. The aim of this study was to compare the operative (OI) with the radiological inclination (RI) angle and determine the influence of patient morphology on pelvic tilt and cup inclination angle.

Methods

In the first cohort of 100 patients undergoing uncemented primary total hip arthroplasty, the cup was inserted freehand. In the second cohort of 100 patients, the OI was measured with the aid of a digital inclinometer. RI and pelvic tilt in lateral decubitus were measured.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 603 - 610
1 May 2015
Meermans G Goetheer-Smits I Lim RF Van Doorn WJ Kats J

A high radiographic inclination angle (RI) contributes to accelerated wear and has been associated with dislocation after total hip arthroplasty (THA). With freehand positioning of the acetabular component there is a lack of accuracy, with a trend towards a high radiographic inclination angle. The aim of this study was to investigate whether the use of a digital protractor to measure the operative inclination angle (OI) could improve the positioning of the acetabular component in relation to a ‘safe zone’.

We measured the radiographic inclination angles of 200 consecutive uncemented primary THAs. In the first 100 the component was introduced freehand and in the second 100 a digital protractor was used to measure the operative inclination angle.

The mean difference between the operative and the radiographic inclination angles (∆RI–OI) in the second cohort was 12.3° (3.8° to 19.8°). There was a strong correlation between the circumference of the hip and ∆RI–OI. The number of RI outliers was significantly reduced in the protractor group (p = 0.002).

Adjusting the OI, using a digital protractor and taking into account the circumference of the patient’s hip, improves the RI significantly (p < 0.001) and does not require additional operating time.

Cite this article: Bone Joint J 2015; 97-B:603–610.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 312 - 318
1 Mar 2014
Meermans G Van Doorn WJ Koenraadt K Kats J

The orientation of the acetabular component can influence both the short- and long-term outcomes of total hip replacement (THR). We performed a prospective, randomised, controlled trial of two groups, comprising of 40 patients each, in order to compare freehand introduction of the component with introduction using the transverse acetabular ligament (TAL) as a reference for anteversion. Anteversion and inclination were measured on pelvic radiographs.

With respect to anteversion, in the freehand group 22.5% of the components were outside the safe zone versus 0% in the transverse acetabular ligament group (p = 0.002). The mean angle of anteversion in the freehand group was 21° (2° to 35°) which was significantly higher compared with 17° (2° to 25°) in the TAL group (p = 0.004). There was a significant difference comparing the variations of both groups (p = 0.008).

With respect to inclination, in the freehand group 37.5% of the components were outside the safe zone versus 20% in the TAL group (p = 0.14). There was no significant difference regarding the accuracy or variation of the angle of inclination when comparing the two groups.

The transverse acetabular ligament may be used to obtain the appropriate anteversion when introducing the acetabular component during THR, but not acetabular component inclination.

Cite this article: Bone Joint J 2014;96-B:312–18.