header advert
Results 1 - 11 of 11
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 191 - 197
1 Feb 2020
Gabor JA Padilla JA Feng JE Schnaser E Lutes WB Park KJ Incavo S Vigdorchik J Schwarzkopf R

Aims

Although good clinical outcomes have been reported for monolithic tapered, fluted, titanium stems (TFTS), early results showed high rates of subsidence. Advances in stem design may mitigate these concerns. This study reports on the use of a current monolithic TFTS for a variety of indications.

Methods

A multi-institutional retrospective study of all consecutive total hip arthroplasty (THA) and revision total hip arthroplasty (rTHA) patients who received the monolithic TFTS was conducted. Surgery was performed by eight fellowship-trained arthroplasty surgeons at four institutions. A total of 157 hips in 153 patients at a mean follow-up of 11.6 months (SD7.8) were included. Mean patient age at the time of surgery was 67.4 years (SD 13.3) and mean body mass index (BMI) was 28.9 kg/m2 (SD 6.5). Outcomes included intraoperative complications, one-year all-cause re-revisions, and subsidence at postoperative time intervals (two weeks, six weeks, six months, nine months, and one year).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 4 - 4
1 Mar 2017
Meftah M Bernstein D Incavo S
Full Access

Introduction

We previously reported a 28% short-term corrosion-related revision rate of recalled Rejuvenate modular stem. The purpose of this study was to assess the mid-term clinical results and survivorship of this implant.

Methods

Between June 2009 and July 2012, 73 total hip arthroplasty (THA) in 63 patients with the Rejuvenate modular neck implant were performed by a single surgeon and prospectively followed. Average age was 63.2 ± 12.6 years (28 to 86). Elevated metal ion (= 2 µg/L), pain, or positive MRI findings were indication for revision surgery. Correlation between patient factors with serum metal ion levels and revisions were analyzed.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 59 - 59
1 Mar 2017
Noble P Foley E Simpson J Gold J Choi J Ismaily S Mathis K Incavo S
Full Access

Introduction

Numerous factors have been hypothesized as contributing to mechanically-assisted corrosion at the head-neck junction of total hip prostheses. While variables attributable to the implant and the patient are amenable to investigation, parameters describing assembly of the component parts can be difficult to determine. Nonetheless, increasing evidence suggests that the manner of intraoperative assembly of modular components plays a critical role in the fretting and corrosion of modular implants. This study was undertaken to measure the magnitude and direction of the impaction forces applied by surgeons in assembling modular head-neck junctions under operative conditions where both the access and visibility of the prosthesis may potentially compromise component fixation.

Methods

A surrogate consisting of the lower limb with overlying soft tissue was developed to simulate THR performed via a 10cm incision using the posterior approach. The surrogate was modified to match the resistance of the body to retraction of the incision, mobilization of the femur and hammering of the implanted femoral component. An instrumented femoral stem (SL PLUS) was surgically implanted into the bone after attachment of 3 miniature accelerometers (Dytran Inc) in an orthogonal array to the proximal surface of the prosthesis. A 32mm cobalt chrome femoral head was mounted on the trunnion (12/14 taper, machined) of the femoral stem. 15 Board-certified and trainee surgeons replicated their surgical technique in exposing the femur and impacting the modular head on the tapered trunnion. Impaction was performed using an instrumented hammer (5000 Lbf Dytran impact hammer) that provided measurements of the magnitude and temporal variation of the impact force. The components of force acting along the axis aof the neck and in the AP and ML directions were continuously samples using the accelerometers.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 91 - 91
1 Jan 2016
Derasari A Gold J Alexander J Kim SW Patel R Parekh J Incavo S Noble P
Full Access

Introduction

Mechanically-assisted corrosion of the head-neck junction present a dilemma to surgeons at revision THR whenever the femoral component is rigidly fixed to the femur. Many remove the damaged femoral head, clean the femoral taper and fix a new head in place to spare the patient the risks associated with extraction and replacement of the well-functioning femoral stem. This study was performed to answer these research questions:

Will new metal heads restore the mechanical integrity of the original modular junction after impaction on corroded tapers?

Which variables affect the stability of the new interface created at revision THR?

Materials and Methods

Twenty-two tapers (CoCr, n=12; TiAlV, n=10) were obtained for use in this study. Ten stems were in pristine condition, while 12 stems had been retrieved at revision THR and with corrosion damage to the trunnion (Goldberg scale 4). Twenty-two new metal heads were obtained for use in the study, each matching the taper and manufacturer of the original component. The following test states were performed using a MTS Machine: 1. Assembly, 2. Disassembly, 3. Assembly, 4. Toggling and 5. Disassembly. All head assemblies were performed wet using 50% calf serum in accordance to ISO 7206-10. During toggling, each specimen's loading axis was aligned 25° to the trunnion axis in the frontal plane and 10° in the sagittal plane (Figure 1). Toggling was performed at 1Hz for 2,000 cycles with a sinusoidal loading function (230N–4300N). During loading, 3D motion of the head-trunnion junction was measured using a custom jig rigidly attached to the head and the neck of each prosthesis. Relative displacement of the head with respect to the neck was continuously monitored using 6 high resolution displacement transducers with an accuracy of ±0.6µm. Displacement data was independently validated using FEA models of selected constructs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 456 - 456
1 Dec 2013
Borque K Gold J Ismaily S Patel R Incavo S Noble P
Full Access

Purpose:

Knee pain and instability during high demand activities such as stair descent are reported by patients after TKA. Previous studies theorized that this pain is from increased demand on the quadriceps required to stabilize the femur on the tibia. In this study we explore the relationship between implant design, the posterior cruciate ligament (PCL), and AP stability of the knee during stair descent.

Methods:

CTs of 6 fresh-frozen human cadaveric knees (average age: 61 ± 6.5 years) with functioning cruciates were prepared. All specimens were mounted in a computer controlled, 6 DOF simulator programed to apply physiologic muscle loads and flexion/extension moments simulating the highest demand phase of stair descent (terminal swing to initial contact). A contemporary design of TKA was implanted in each specimen by an experienced surgeon. Testing was repeated after implantation of tibial inserts of the CR, CS with and without a PCL and PS designs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 72 - 72
1 Dec 2013
Haleem A Ismaily S Meftah M Noble P Incavo S
Full Access

Introduction:

Dual mobility total hip arthroplasty (DM-THA) allows for very large femoral head size, which may be beneficial for hip range of motion (ROM). No clinical study has objectively compared ROM in patients with DM-THA and large (36-mm head) total hip arthroplasty (36-THA). The aim of this prospective case-control study is to test the hypotheses that DM-THA provides superior hip ROM compared to 36-THA by dynamic radiography, and that surgical approach (posterolateral [PL] versus modified anterolateral [AL]) has effect on post-operative hip ROM.

Materials and Methods:

Sixteen patients (11 males, 5 females) who had undergone DM-THA with a minimum follow up of one year were age, sex and body mass index (BMI) matched to twenty patients (12 males, 8 females) with 36-THA, all operated upon by the senior author. Maximum hip-trunk flexion, extension and total hip-trunk ROM was calculated on standing lateral digital radiographs of the lower lumbar spine, pelvis and hip, using commercially available software (TraumaCad®, BrainLab, Munich, Germany) from three upright positions; standing neutral, standing with maximum hip flexion and standing with maximum hip extension. Contributions to motion from lumbo-sacral spine (LSS) and pelvic tilt were calculated and subtracted from hip-trunk measurements to quantify true hip flexion, extension and total true hip ROM. Statistical analysis (SPSS software, Chicago, IL) was performed on all radiographic measurements to detect difference in ROM between DM-THA and 36-THA, and to detect difference in ROM between THAs performed through posterolateral (THA-PL) and anterolateral (THA-AL) approaches.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 423 - 423
1 Dec 2013
Meftah M Hwang K Ismaily S Incavo S Mathis K Noble P
Full Access

Introduction:

Proper rotational alignment of the tibial component is a critical factor in the outcome of total knee arthroplasty (TKA), and misalignment has been implicated as a major contributing factor to several mechanisms of TKA failure. In this study we examine the relationship between bony and soft tissue tibial landmarks against the knee motion axis (plane that best approximates tibiofemoral motion through range of motion).

Methods:

The kinematic motions of 16 fresh-frozen lower limb specimens were analyzed in simulated lunging and squatting. All the tendons of the quadriceps and hamstrings were independently loaded to simulate a lunging or squatting maneuver. All specimens underwent CT scan and the 3D position of the knee was virtually reconstructed. Ten anatomic axes were identified using both the intact tibia and the resected tibial surface. Two axes were normal vectors to either the medial-lateral plateau center or the posterior tibial surface. Seven axes were defined between the tibial tubercle (the most prominent point, center of the tubercle, or medial third of the tubercle) and soft tissue landmarks of the tibia (the medial insertion of the patellar tendon, the center of the PCL and ACL, and the tibial spines). The last axis was the Knee Motion Axis (KMA), which was defined as the longitudinal axis of the femur from 30 to 90 degrees of flexion.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 84 - 84
1 Dec 2013
Ismaily S Patel R Suarez A Incavo S Bolognesi MP Noble P
Full Access

Introduction

Malpositioning of the tibial component is a common error in TKR. In theory, placement of the tibial tray could be improved by optimization of its design to more closely match anatomic features of the proximal tibia with the motion axis of the knee joint. However, the inherent variability of tibial anatomy and the size increments required for a non-custom implant system may lead to minimal benefit, despite the increased cost and size of inventory.

This study was undertaken to test the hypotheses:

That correct placement of the tibial component is influenced by the design of the implant.

The operative experience of the surgeon influences the likelihood of correct placement of contemporary designs of tibial trays.

Materials and Methods

CAD models were generated of all sizes of 7 widely used designs of tibial trays, including symmetric (4) and asymmetric (3) designs. Solid models of 10 tibias were selected from a large anatomic collection and verified to ensure that they encompassed the anatomic range of shapes and sizes of Caucasian tibias. Each computer model was resected perpendicular to the canal axis with a posterior slope of 5 degrees at a depth of 5 mm distal to the medial plateau. Fifteen joint surgeons and fourteen experienced trainees individually determined the ideal size and placement of each tray on each resected tibia, corresponding to a total of 2030 implantations. For each implantation we calculated: (i) the rotational alignment of the tray; (ii) its coverage of the resected bony surface, and (iii) the extent of any overhang of the tray beyond the cortical boundary. Differences in the parameters defining the implantations of the surgeons and trainees were evaluated statistically.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 138 - 138
1 Dec 2013
Noble P Patel R Ashfaq K Bernstein D Ismaily S Incavo S
Full Access

Introduction

After TKR, excessive tension within the lateral retinaculum can lead to joint instability, component wear, stiffness and pain. The spatial distribution of strain in the lateral retinculum is unknown, both in the native knee and after TKR. In this study we measure the magnitude and distribution of mechanical strain in the lateral retinaculum with knee flexion, both in the native knee and after TKR. We hypothesize that:

Strain in the lateral retinaculum will increase as a function of flexion.

Some regions of the lateral retinaculum experience greater strain than others.

TKR will affect the magnitude and location of strain during knee flexion.

Materials and Methods

A fiduciary grid of approximately 40–70 markers was attached to the exposed lateral retinacula of five fresh frozen cadaveric knees in order to allow tracking of soft-tissue deformation. Each knee was flexed from 0–120° in a 6 degree-of-freedom custom activity simulator that physiologically loaded the knee during a squatting maneuver. During simulation, the displacement of each fiduciary point was measured using visible-light stereo-photogrammetry. The fiduciary grid divided into four distinct regions for strain analysis. Using the grid of the native knee in full extension as the initial state, the average principal strain in each region was calculated as a function of flexion. Measurements were repeated after TKR was performed using a contemporary implant system.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 148 - 148
1 Dec 2013
Incavo S Noble P Gold KBJ Patel R Ismaily S
Full Access

Introduction

Increasing attention to the functional outcome of total knee arthroplasty (TKA) has demonstrated that many patients experience limitations when attempting to perform demanding activities that are normal for age-matched peers, primarily because of knee symptoms. Episodes of instability following TKA are most commonly reported during activities in which significant transverse or torsional forces are supported by the joint with relatively low joint compression forces, including stair-descent and walking on sloped or uneven surfaces. This study was performed to examine the influence of conformity between the femoral and tibial components on the Antero-Posterior (AP) stability of knee during stair descent.

Methods

Six cadaveric knees were loaded in a six degree-of-freedom joint simulator, with the application of external forces simulating the action of the quadriceps and hamstring muscles and the external loads and moments occurring during stair descent, including the stages of terminal swing phase, weight-acceptance phase (prior to and after quadriceps contraction) and mid-stance. During these manoeuvres, the displacement and rotation of the femur and the tibia were measured with a multi-camera high resolution motion analysis system (Fig. 1). Each knee was tested in the intact and ACL deficient condition – and after implantation of total knee prosthesis with Cruciate-Retaining (CR), Cruciate-Sacrificing with an intact PCL (CS + PCL), Cruciate-Sacrificing with an absent PCL (CS-PCL) and Posterior-Stabilizing (PS) tibial inserts (Figs 2 and 3).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 175 - 175
1 Jun 2012
Noble P Ismaily S Incavo S
Full Access

Introduction

Proper rotational alignment of the tibial component is a critical factor affecting the outcome of TKA. Traditionally, the tibial component is oriented with respect to fixed landmarks on the tibia without reference to the plane of knee motion. In this study, we examined differences between rotational axes based on anatomic landmarks and the true axis of knee motion during a functional activity.

Materials and Methods

24 fresh-frozen lower limb specimens were mounted in a joint simulator which enable replication of lunging and squatting through application of muscle and body-weight forces. Kinematic data was collected using a 3D motion analysis system. Computer models of the femur and tibia were generated by CT reconstruction. The motion axis of each knee (TFA) was defined by the 3D path of the femur with respect to the tibia as the knee was flexed from 30 to 90 degrees. The orientation the TFA was compared to 5 different anatomic axes commonly proposed for alignment of the tibial component.