header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 148 - 148
11 Apr 2023
Kopinski-Grünwald O Guillaume O Arslan A Van Vlierberghe S Ovsianikov A
Full Access

In the field of tissue engineering (TE), mainly two approaches have been widely studied and utilised throughout the last two decades. Ovsianikov et al. proposed a third strategy for tissue engineering to combine the advantages of the scaffold-based and scaffold-free approach [1].

We utilise the third strategy for TE by fabrication of cell spheroids that are reinforced by microscaffolds, called tissue units (TUs). Aim of the presented study is to differentiate TUs towards a chondrogenic phenotype to show the self-assembly of a millimetre sized cartilage-like tissue in a bottom-up TE approach in vitro.

Two-Photon polymerization (2PP) was utilised to fabricate highly porous microscaffolds with a diameter of 300 µm. The biocompatible and biodegradable, resin Degrad INX (supplied from Xpect INX, Ghent, Belgium) was used for 3D-printing. Each microscaffold was seeded with 4000 human adipose derived stem cells (hASCs) in low-adhesive 96-well plates to allow spheroid formation. TUs were differentiated towards the chondrogenic lineage by application of chondrogenic media, subsequently merged in a cylindrical agarose mold, to fuse into a connected tissue with a diameter of ~1.8 mm and a height of 8 mm.

The characterization of TUs differentiated towards the chondrogenic phenotype included gene expression and protein analysis. Furthermore, immunohistochemically staining for Collagen II and Alcian blue staining were performed to investigate the matrix deposition and fusion of the self-assembled tissue.

Our results suggest that the utilised method could be a promising approach for a variety of tissue engineering approaches, due to the good applicability to a defect side combined with the self-assembly properties of the TUs. Furthermore, the differentiation potential of hASCs is not limited to chondrogenic lineages only, which could pave the way to further TE applications in the future.

Acknowledgements:

This research work was financially supported by the European Research Council (Consolidator Grant 772464 A.O.)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 132 - 132
1 Nov 2018
Eglin D Geven M Schmid T Grijpma D Bos R Richards G Alini M Guillaume O
Full Access

Orbital floor (OF) fractures are commonly treated by implanting either bioinert titanium or polyethylene implants, or by autologous grafts. A personalized implant made of biodegradable and osteopromotive poly(trimethylene carbonate) loaded with hydroxyapatite (PTMC-HA) could be a suitable alternative for patients where a permanent implant could be detrimental. A workflow was developed from the implant production using stereolithography (SLA) based on patient CT scan to the implantation and assessment its performance (i.e. implant stability, orbit position, bone formation) compared to personalised titanium implants in a repair OF defect sheep model. Implants fabrication was done using SLA of photo-crosslinkable PTMC mixed with HA [1–3]. Preclinical study: (sheep n=12, ethic number 34_2016) was conducted by first scanning the OF bone of each sheep in order to design and to fabricate patient specific implants (PSI) made of PTMC-HA. The fabricated PSI was implanted after creating OF defect. Bone formation and defect healing was compared to manually shaped titanium mesh using time-laps X-ray analyses, histology (Giemsa-Eosin staining) and sequential fluorochrome staining over 3-months. Additionally, the osteoinductive property of the biomaterials was assessed by intramuscular implantation (IM). In this study, we showed that the composite PTMC-HA allowed for ectopic bone formation after IM implantation, without requiring any biotherapeutics. In addition, we could repair OF defect on sheep using SLA-fabricated PTMC-HA with a good shape fidelity (compared to the virtual implant) and a better bone integration compared to the titanium mesh. This study opens the field of patient-specific implants made of degradable and osteoinductive scaffolds fabricated using additive manufacturing to replace advantageously autologous bone and titanium implants.