header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 64 - 64
2 Jan 2024
Rodrigues M Almeida A Miranda M Vinhas A Gonçalves AI Gomes M
Full Access

Chronic inflammatory events have been associated to almost every chronic disease, including cardiovascular-, neurodegenerative- and autoimmune- diseases, cancer, and host-implant rejection. Given the toll of chronic inflammation in healthcare and socioeconomical costs developing strategies to resolve and control chronic states of inflammation remain a priority for the significant benefit of patients.

Macrophages (Mφ) hold a central role both in the initiation and resolution of inflammatory events, assuming different functional profiles. The outstanding features of Mφ counting with the easy access to tissues, and the extended networking make Mφ excellent candidates for precision therapy. Moreover, sophisticated macrophage-oriented systems could offer innovative immune-regulatory alternatives to effectively regulate chronic environments that traditional pharmacological agents cannot provide.

We propose magnetically assisted systems for balancing Mφ functions at the injury site. This platform combines polymers, inflammatory miRNA antagonists and magnetically responsive nanoparticles to stimulate Mφ functions towards pro-regenerative phenotypes. Strategies with magnetically assisted systems include contactless presentation of immune-modulatory molecules, cell internalization of regulatory agents for functional programming via magnetofection, and multiple payload delivery and release.

Overall, Mφ-oriented systems stimulated pro-regenerative functions of Mφ supporting magnetically assisted theranostic nanoplatforms for precision therapies, envisioning safer and more effective control over the distribution of sensitive nanotherapeutics for the treatments of chronical inflammatory conditions.

Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM

RES Hub (Norte-01-0145-FEDER-022190).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 72 - 72
1 Apr 2018
Gonçalves AI Rotherham M Markides H Rodrigues MT Reis RL Gomes ME Haj AE
Full Access

Tendon injuries are a worldwide problem affecting several age groups and stem cell based therapies hold potential for tendon strategies guiding tendon regeneration.

Tendons rely on mechano-sensing mechanisms that regulate homeostasis and influence regeneration. The mechanosensitive receptors available in cell membranes sense the external stimuli and initiate mechanotransduction processes. Activins are members of the TGF-β superfamily which participate in several tendon biological processes. It is envisioned that the activation of the activin receptor, trigger downstream Smad2/3 pathway thus regulating the transcription of tenogenic genes driving stem cell differentiation.

In this work, we propose to target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), inducing hASCs commitment towards the tenogenic lineage. Since mechanotransduction can be remotely triggered through magnetic actuation combined with magnetic nanoparticles (MNPs), we stimulated hASCs tagged complexes using a vertical oscillating magnetic bioreactor (MICA Biosystems Ltd). Carboxyl functionalised MNPs (Micromod) were coated with anti-ActRIIA antibody (Abcam) by carbodiimide activation. hASCs were then cultured with MNPs-anti-ActRIIA for 14days with or without magnetic exposure (1Hz, 1h/every other day). hASCs cultured alone in αMEM (negative control) or in αMEM supplemented with ActivinA (R&D systems) (positive control of ActRIIA activation) were used as experimental controls. The tenogenic commitment of hASCs was assessed by real time RT-PCR, immunocytochemistry and quantification of collagen and non-collagenous proteins. Moreover, the phosphorylation of Smad2/3 was also evaluated on hASCs incubated for 2, 10, or 30min under magnetic stimulated (1Hz) and non-stimulated conditions.

The increased gene expression of tendon related markers and higher ECM proteins deposition suggests that remote magnetic activation of ActRIIA promotes effectively hASCs tenogenic commitment. Furthermore, the detection of phospho-Smad2/3 proteins by ELISA (Cell Signaling Technology) was significantly more intense after 10min in hASCs under magnetic stimulation and in comparison to the control groups. These outcomes suggest that ActRIIA is a mechanosensitive receptor that can be remotely activated upon magnetic stimulation.

In conclusion, remotely activation of MNPs tagged hASCs has potential for modulating tenogenic differentiation of stem cells envisioning successful cell therapies for tendon regeneration.

Acknowledgements

FCT/MCTES PD/59/2013 (fellowship PD/BD/113802/2015), FCT post-doctoral grant SFRH/BPD/111729/2015, FCT grant IF/00685/2012, and EU-ITN MagneticFun.