header advert
Results 101 - 120 of 132
Results per page:
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 390 - 390
1 Oct 2006
Ingram J Korossis S Fisher J Ingham J
Full Access

Introduction: The anterior cruciate ligament (ACL) is the most frequently damaged ligament in the knee joint. The patella tendon autograft is the current replacement of choice, however autografts are not always available and grafting often leads to donor site morbidity. Allogeneic implants may cause an adverse immunological reaction [1] The aim of this study was to develop an acellular tendon scaffold with the mechanical and biochemical properties of tissue which could be rapidly recellularised for use in tissue engineering of the anterior cruciate ligament.

Materials and Methods: Porcine patella tendons were dissected less than 24 hours after slaughter and washed in PBS. The tendons were decellularised using 0.1% (w/ v) SDS for 24 hours. Decellularisation was assessed by haematoxylin and eosin staining and light microscopy. The glycosaminoglycan and hydroxyproline (measure of collagen) content of the scaffold were also assessed quantitatively following decellularisation. Following decellularisation the scaffolds were subject to various levels of ultrasonication in order to modify the acellular scaffold prior to reseeding in an attempt to achieve recellularisation of the scaffold. Denaturation of the collagen within the scaffold following ultrasonication was assessed using the ƒÑ-chymotrypsin assay. Decellularised and ultrasonicated scaffolds were subject to uniaxial tensile loading to failure in a Howden tensile testing machine. The sonicated scaffolds were reseeded with human tenocytes (1x105 cells.cm2) and cultured in 5% CO2 in air at 37°C for three weeks. One scaffold was removed every seven days and either fixed in 10% neutral buffered formalin prior to dehydration and H& E staining or was stained with Live/Dead stain (Molecular Probes) and observed using confocal microscopy.

Results: Porcine patella tendons were successfully decellularised using 0.1% (w/v) SDS. Following decellularisation there was no change in the biochemical composition of the scaffold. Ultrasonication of the scaffold at 360W was shown to open up spaces between collagen bundles without damaging the collagen matrix and this was confirmed with the Ą-chymotrypsin assay. Following decellularisation and ultrasonication there was no change in the ultimate force (N) needed to break the tendon scaffold. When cells were seeded onto the sonicated scaffold, the cells were shown to penetrate to the centre of the scaffold within just 3 weeks of culture. Following staining with Live/Dead stain it was shown that after three weeks in static culture approximately 50% of the cells in the centre of the scaffold were viable. In comparison the cells cultured on the acellular non-sonicated scaffold remained on the surface of the scaffold and did not penetrate the matrix during this culture period.

Conclusion: An acellular scaffold with excellent biochemical and mechanical properties has been developed which can be recellularised in an important first step towards tissue engineering of the anterior cruciate ligament. Future work will investigate culture of the reseeded scaffold under appropriate physical stimulation with a view to maintaining tissue homeostasis and increasing cell viability.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 393 - 393
1 Oct 2006
Brown C Papageorgiou I Fisher J Ingham E Case C
Full Access

Introduction: Cobalt-chrome particles from metal hip implants can accumulate in the liver, spleen, lymph nodes and bone marrow of patients. This is a concern as studies have reported neoplastic changes in cells of patients with metal implants. The aims of this study were to determine the effect of wear particles generated by metal-on-metal and ceramic-on-metal implants from hip simulations upon the viability of L929 cells and to determine their genotoxic potential when cultured with primary human fibroblasts.

Methods: Particles were generated in a 10 station Prosim hip simulator run with water as lubricant under microseparation and standard conditions. Bearings comprised medical grade HIPed ‘BIOLOX Forte’ alumina ceramic femoral heads against Ultima metal CoCr acetabular cups (CoM) and wrought CoCr alloy ASTM F1537 femoral heads and acetabular cups (MoM). Particles were sterilised at 1800C for 4 hours and cultured with L929 fibroblasts at particle volume(μm3):cell number ratios of 500:1, 100:1, 50:1, 5:1, 0.5:1, 0.05:1, 0.005:1 and 0.0005:1. Camptothecin (1 and 2μg.ml-1) and latex beads (100μm3 per cell) were used as positive and negative controls. Cultures were for 0, 1, 2, 3, 4 and 5 days at 37oC in 5%(v/v) CO2 in air. Cell viability was assessed using the ATPlite assay. Sterile particles were cultured with primary human fibroblasts at particle volume (μm3):cell number ratios of 50:1, 5:1 and 0.5:1. Cells were exposed to 30%(v/v) H2O2 (positive control) and latex beads (50μm3 per cell; negative control). Cells were cultured for 24 hours and 5 days at 37oC in 5%(v/v) CO2 in air. Genotoxicity was assessed using the comet assay. Statistical analysis between the cell-only negative controls and the cells with the particles at various concentrations, were determined by ANOVA and calculating the minimum significant difference (MSD;p< 0.05) using the T-method.

Results: Particle volume(μm3):cell ratios of 500:1, 100:1 and 50:1 caused a significant decrease in cell viability over 5 days. Wear particles from MoM implants under microseparation wear conditions were also significantly reduced viability at particle volume(μm3):cell ratios of 5:1 over 5 days. Particles from MoM implants under standard wear conditions and CoM implants under both wear conditions resulted in increases in tail length and tail moment relative to the cells only negative control for all treatment groups after 24 hours. These decreased by day 5. Tail length and tail moment were increased at 24 hours relative to day 5 for each of the three particle types. Particles generated by MoM implants under microseparation conditions had different effects upon cells. Tail lengths increased between days 1and 5 for all particle concentrations. A significant increase in tail moments between days 1 and 5 was recorded.

Discussion: This study has shown that metal particles can cause cytotoxic effects and immediate DNA damage to fibroblasts in vitro. Particles were found to reduce cell viability over 5 days and this may account for the decreases in tail length and moments between 1 and 5 days for three particle types. This is of concern as MoM and CoM implants are designed to be implanted into young patients and, despite their low wear rates generate circa 1013 particles per mm3 of wear.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 371 - 371
1 Oct 2006
Papageorgiou I Ingham E Fisher J Jones E Learmonth I Case C
Full Access

Introduction: Joint replacement surgery is one of the most common operations that take place in United Kingdom. The major problem in total hip arthroplasty is the generation of particulate wear debris and the subsequent biological responses. Wear debris induces osteolysis and a subsequent failure of the implant that lead to the liberation of greater quantities of particulate and soluble debris to bone marrow, blood, lymph nodes, liver and spleen. Recently, it has been suggested that these adverse effects depend not only on the chemical composition but also on the particulate nature of the material (size and shape). Particle size has been shown to influence the inflammatory response of macrophages to wear debris. This study evaluated whether particle size also influences the viability and mutagenic damage.

Methods: Cobalt chrome alloy particles of two sizes (large 2.9±1.1μm, small 0.07±0.04 μm) were generated and characterised by Scanning Electron Microscopy. Different concentrations of particles were added to primary human fibroblasts in tissue culture. The release of cytokines in the medium was assayed by Enzyme-Linked ImunnoSorbent Assay (ELISA). Cell viability was determined by MTT conversion and the degree of DNA damage was quantitatively analysed by the Alkaline Single Cell Gel Electrophoresis (COMET) assay with image analysis.

Results: Small particles initialise DNA damage at much lower volumetric concentrations (0.05 and 0.5 μm3/cell) than larger particles (500 μm3/cell). The difference in the doses was approximately related to the difference in surface area of the particles. DNA damage was related to a delayed decrease in cell viability, which was noted after three days of exposure.

In contrast, the release of the inflammatory cytokine TNF-α and the multifunctional growth factor TGF-β-2 occurred at lower doses (0.0005 to 5 μm3/cell for TNF-α and 0.5 to 50 μm3/cell for TGF-β-2). No release of IL-6 was detected at any dose. Only growth factor FGF-23 was increased in similar pattern to the DNA damage.

Conclusions: This study has demonstrated important differences between the mutagenicity, toxicity and inflammatory potential of small (nanometre sized) and large (micrometer sized) chrome particles.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 395 - 395
1 Oct 2006
Jennings L Bell C Ingham E Komistek R Stone M Fisher J
Full Access

Introduction: In vivo fluoroscopic studies have shown considerable differences in kinematics between different designs of knee prostheses and compared to the natural knee. Most noticeably, lift off of the femoral condyles from the tibial insert has been observed in many patients (Dennis et al, 2003). The aim of this study was to simulate lateral femoral condylar lift off in vitro and to compare the wear of fixed bearing knee prostheses with and without lift off.

Materials and Methods: 12 PFC Sigma cruciate retaining fixed bearing knees (DePuy, Leeds, UK) were tested. The 10 mm thick inserts were manufactured from GUR1020 UHMWPE and gamma irradiated in a vacuum. The inserts snap fitted into titanium alloy tibial trays, and articulated against Co-Cr-Mo alloy femoral components. The testing was carried out on six station simulators (Prosim, Manchester, UK). Femoral axis loading (maximum 2.6 kN) and the flex-ion-extension profile (0–58°) were adopted from ISO 14243 (1999). The internal/external rotation was ± 5° and anterior/ posterior displacement 0–5 mm. Six of the knees were tested under these standard conditions for 4 million cycles. A further six knees were tested under these conditions with the addition of lateral femoral condylar lift off, for 5 million cycles. The lift off was achieved by introducing an adduction moment to the tibial carriage, producing a separation of approximately 1 mm during the swing phase of the simulator cycle. The simulator was run at 1 Hz and the lubricant used was 25% newborn calf serum. Wear was determined gravimetrically, using unloaded soak controls to adjust for moisture uptake. Statistical analysis was performed using Students t-test (p < 0.05).

Results: Under the standard kinematic conditions the mean wear rate with 95% confidence limits was 8.8 ± 4.8 mm3/million cycles. When femoral condylar lift off was simulated the mean wear rate increased to 16.2 ± 2.9 mm3/million cycles, which was statistically significantly higher (p < 0.01). The wear patterns on the femoral articulating surface of all the inserts showed more burnishing wear on the medial condyle than the lateral. However, in the simulation of lift off the medial condyle was even more aggressively worn with evidence of adhesion and surface defects.

Discussion: The presence of lateral femoral condylar lift off resulted in a higher wear rate on the medial compartment of the PFC Sigma fixed bearing knee. This could be due to elevated contact stresses as the lateral lift off produced uneven loading of the bearing. Further, additional medial/lateral sliding of the medial condyle whilst it remained in contact may have accelerated the wear by cross shearing of the polyethylene in the medial/lateral direction. This direction is weakened when the polyethylene is preferentially molecularly orientated by sliding in the flexion-extension axis. The implications of condylar lift off include premature wear of the polyethylene and possible component loosening.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 395 - 395
1 Oct 2006
Matsuda S Grogan R Stewart T Stone M Fisher J
Full Access

All polyethylene tibial components (APT) for total knee joint replacement have been recently reintroduced due to their past success and cost savings with respect to knee designs with a metal backed tibial tray (MBT). However, isolated cases of collapse of the medial bone in APT designs have been observed by the authors prompting this investigation. The objective of this study was to investigate the stress/strain distribution within the cancellous bone for the APT and MBT systems, particularly looking at the effects of coverage of the tray over the proximal tibia in each design. A three-dimensional finite element model of the proximal tibia implanted with a tibia tray was generated. An elliptical cylindrical tibia tray with a peg was modeled as being perfectly bonded to a PMMA layer on the superior surface of the cancellous and cortical bone. Gap size between the edge of the tray and outer of the cancellous bone, was introduced in the medial direction. Load was applied on the superior surface of the tibial insert in the medial side. Two lift-off loading cases were used, a low load of 800N (1 body-weight) and a high load of 3200N (4 x BW), both on the medial side. Permanent plastic deformation and collapse was allowed only in the cancellous bone, while all other materials were modeled elastically. Under low load conditions within the elastic limit, introducing a gap between the tray and the cortical bone produced a stress/strain intensity in the cancellous bone beneath the edge of the tray. The strain in the cancellous bone within the APT design was generally 3 times greater than the MBT design, however, peak strain values were similar at the edge of the tray. Whilst the strain increased with the introduction of a gap the resulting strain was not sensitive to the gap size for both designs. Under high load conditions, permanent plastic deformation and bone collapse were observed in the cancellous bone at the edge of the tibial tray in both designs where a gap was introduced. The maximum strain in the cancellous bone was found to be more sensitive to the gap size for the APT design than the MBT design. This can be contributed to the difference in the load transfer through the cancellous bone in the two designs. The MBT design with the more rigid tibial tray transfered higher load through the outer cortical bone than the APT design. The less rigid APT design resulted in progressive collapse of the cancellous bone beneath the tray. Particularly significant was the volume of highly stressed cancellous bone which was 4 times greater in the APT design compared to the MBT design. The results suggest that coverage may be a more important parameter for the APT design than the MBT design. The APT design may, therefore, be more suited to patients with better bone quality.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 397 - 397
1 Oct 2006
Galvin A Ingham E Fisher J
Full Access

Introduction: Crosslinking has been extensively introduced to reduce the wear of UHMWPE. Zero wear of highly crosslinked UHMWPE has been reported by some groups (1) in hip simulators, clinical studies have reported finite wear rates (2). The aim of this study was to compare the wear rates produced by UHMWPE with different levels of crosslinking.

Materials and Methods: Studies were carried out using 28mm diameter cobalt chrome femoral heads. These were articulated against UHMWPE in the Leeds ProSim hip joint simulator. The acetabular cups were manufactured from UHMWPE GUR 1050. The GUR 1050 was highly crosslinked with 10MRad or 7.5MRad of gamma irradiation in nitrogen followed by re-melting at a temperature above 150°C. Slightly crosslinked GUR 1050 was also tested (gamma irradiated with 2.5MRad in air). Non-crosslinked GUR 1050 UHMWPE was used as a control. Five cups of the materials were tested with one station from each set of five being used for creep data. Wear measurements were taken every million cycles using a coordinate measuring machine and tests were run to 5 million cycles. The tests were carried out in low serum concentrations of 25% (v/v) bovine serum diluted with 0.1% (w/v) sodium azide in water. At each million cycles a 3D measurement was taken of the contact region of the acetabular cups using a Form Talysurf profilometer.

Results and Discussion: The wear rate decreased as crosslinking levels increased. The non-crosslinked material had an overall average wear (mm3/million cycles) determined by volume change of 45.6+/−1.35, the 2.5MRad material 46.9+/−9.4, the 7.5MRad 15.04+/−4.28 and the 10MRad material 8.7+/−3.11. The intentionally cross-linked materials showed a significantly lower volume change than the other two materials, with the 10MRad polyethylene having a slightly lower volume change than the 7.5MRad polyethylene. All four polyethylenes showed greater volume change in the first million cycles than the subsequent four and this was associated with initial creep deformation in the first million cycles. The individual creep deformation cups confirmed this with volume changes in the first million cycles followed by stability. Creep volumes of between 10 and 25 mm3 total were measured with the lowest value being for the 10MRad polyethylene. The steady state wear rates for the PE’s between one and five million cycles were 0MRad 36.9+/−1.92 mm3/million cycles, 2.5MRad 44.12+/−10.09, 7.5MRad 7.89+/−2.32 and 10MRad 4.62+/−2.73. The results of the surface topography of the acetabular cups showed that the highly crosslinked materials became smoother than the other materials as the test progressed. This would benefit the crosslinked materials in aiding lubrication and could have contributed to the lower wear rate seen with these materials.

Conclusion: The highly crosslinked UHMWPE gave lower wear volumes than the noncrosslinked materials. This could have been due to the smoother surfaces of the cups as the study progressed which resulted in better lubrication of the components. Finite wear rates have been recorded for the first time with highly cross-linked polyethylene, that compare with clinical observations.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 406 - 406
1 Oct 2006
Katta J Bell C Carrick L Ingham E Aggeli A Boden N Waigh T Jin Z Fisher J
Full Access

Viscosupplementation is the current treatment modality for early stage arthritis and in some cases for delaying joint replacement procedures. Rheological properties similar to that of synovial fluid and high molecular weight have been recognized as the determining factors in hyaluronic acids (HA) therapeutic and analgesic value (1). In this study, the self assembly of peptides into beta-sheet structures in solution (24) is explored to develop novel biocompatible injectable joint lubricants. These peptides can be delivered into the joint easily in their low viscosity monomer form, while they are designed to self-assemble in situ under physiological conditions. Four different peptides P11-4, P11-8, P11-9, and P11-12 were designed based on the chemical motif of hyaluronic acid and were found to self-assemble into nematic fluids and gels under physiological conditions. Friction characteristics of these peptides as lubricants were evaluated in a bovine cartilage on cartilage model using a simple pin on plate geometry and under various sliding conditions. Friction tests were carried out using both healthy and damaged bovine cartilage samples, to study the therapeutic effect of these peptides as lubricants. Further, a rheometer with cone-on-plate configuration was used to study these peptides in shear viscosity and oscillatory shear modes to determine their viscoelastic properties. Both the friction properties and rheological behaviour of the peptides were compared to that of a commercially available hyaluronic acid preparation that was tested along with the peptides. Peptide P11-9 was found to have very similar viscoelastic properties to that of HA, and was also the most effective in friction level reduction among the four peptides tested. When compared to HA, P11-9 showed slightly better friction characteristics in all the healthy cartilage models, while HA was the best lubricant in damaged cartilage models when compared to P11-9 and other peptides. The results indicate that these novel self assembling peptides can be developed as a new generation of synthetic viscosupplements for the treatment of early stage arthritis.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 237 - 238
1 May 2006
Williams S Jin ZM Stone MH Ingham E Fisher J
Full Access

There is currently much interest in the wear of metal-on-metal THRs and potential concerns about elevated metal ion levels. Generally, wear of metal-on-metal THR’s has been low in simulator studies. Slightly higher and more variable wear has been found clinically. Variations in surgical approach, technique and fixation method may influence the level of force applied across the prosthesis during gait. It is hypothesised that increased joint tensioning may increase loading of THR’s during the swing-phase; leading to elevated wear and friction due to depleted fluid film lubrication. This study aimed to assess the effect of swing-phase load on the friction, lubrication and wear of metal-on-metal THR’s.

Cobalt-chrome 28mm metal-on-metal THR’s were tested in a physiological hip simulator, loading was modified to provide; (1) ISO swing-phase load (280N, as per ISO 14242-1) and (2) low swing-phase load (< 100N). Friction testing was conducted using a pendulum friction simulator, with 280N and 100N swing-phase loads. Theoretical lubrication modelling was carried out using elastohydrodynamic lubrication theory.

The overall mean volumetric wear rates was 10-times greater in THR’s tested with an ISO swing-phase load in comparison to THR’s tested with low swing-phase loads (0.58±0.49 compared to 0.06±0.039mm3/million cycles). The friction factors were 0.129 and 0.173 respectively under low and ISO swing-phase conditions. A decrease in the predicted lubricant film thickness when the swing-phase load was increased was observed; at the start of stance phase this was 0.12microns and 0.07microns under low and ISO swing-phase conditions respectively.

The results demonstrate that the performance of metal-on-metal THR’s is highly dependent on swing-phase load conditions. It is postulated that fixation method and surgical technique can affect the swing-phase load. This study has demonstrated that over-tensioning of the tissues may also accelerate wear. These observations may explain some of the variations reported clinically.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 7 - 7
1 Mar 2006
Fisher J
Full Access

Wear and wear debris induced osteolysis is recognised as a major cause of long term failure in hip prostheses. Historically ultra high molecular weight polyethylene acetabular cups produced micron and submicron wear particles which accumulated in peri prosthetic tissues, and stimulated macrophages to generate wear debris induced osteolysis. Acceleration of wear and osteolysis was caused in historical materials by oxidative degradation of the polyethylene following gamma irradiation in air, and by third body damage and scratching of metallic femoral heads. Current conventional ultra high molecular weight polyethylene cups are irradiated in an inert atmosphere to reduce oxidative degradation and are articulated against ceramic femoral heads to reduce third body wear. More recently modified highly cross linked polyethylene has been developed, and while these materials produce a four to five fold reduction in wear volume the wear particles have been found to be more reactive, resulting in only a two fold reduction in functional osteolytic potential. The question remains as to whether this performance is adequate for high demand patients, particularly if larger diameter femoral heads are to be used.

Recent interest in improved function, stability and reducing dislocations has generated interest in using larger diameter heads and hard on hard bearings.

Alumina ceramic on ceramic bearings have shown a one hundred fold decrease in wear compared to highly cross linked polyethylene materials, and cell culture studies have shown the wear particles to be more bio-compatible and less osteolytic potential.

Metal on metal bearings also produced very low wear rates compared to polyethylene. The wear particles are very small, 10 to 50 nanometers in size, some concern remains about the systematic release of metallic ions. These are lubrication sensitive bearings, and they unlike polyethylene wear decreases as the head size increases due to improved lubrication. Size 36 mm metal bearings are now commonplace for total joint replacements with even larger head sizes being used for surface replacement solutions.

The demand for increased function and improved stability is leading to increased use of hard on hard bearings with larger diameter heads.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 226 - 226
1 Sep 2005
McEwen H Kamali A Farrar R Stone M Fisher J
Full Access

Introduction: Reduction of ultra high molecular weight polyethylene (UHMWPE) surface wear in total knee replacement (TKR) bearings may delay the onset of osteolysis and subsequent loosening of components. The aim of this study was to compare the effect of bearing material on UHMWPE wear using a physiological knee simulator.

Methods: LCS Rotating Platform (RP) mobile bearing TKRs (DePuy) were investigated with standard and custom insert materials (Table 1). Testing was completed on a six-station force/displacement controlled knee simulator (frequency 1 Hz). Kinematic inputs consisted of 0 – 58° extension-flexion [1], maximum 2600 N axial force [1], -262 to 110 N anterior-posterior force [1] and ± 5° internal-external rotation [2]. The test lubricant was 25% (v/v) bovine serum with 0.1% (m/v) sodium azide solution in sterile water. Six components of each material were tested for up to five million cycles. The mean wear rates of the inserts were determined gravimetrically after every million cycles.

Results and Discussion: The higher molecular weight 1050 GP exhibited a higher wear rate than 1020 NI but the difference was not statistically significant (p > 0.05) (Fig. 1). The medium level of crosslinking in the Marathon GP inserts significantly reduced wear in comparison to the uncrosslinked 1050 GP material (p < 0.05) and moderate crosslinking in the 1020 GVF also decreased wear compared with the 1020 NI base material although this was not statistically significant. However, these differences would not be considered to be clinically significant. In addition, further work should be completed to assess the biological activity of the crosslinked materials as increased biological response may negate the benefit of decreased volumetric wear. All RP materials exhibited significantly reduced wear rates (p < 0.05) in comparison to fixed bearing TKR tested under equivalent high kinematic conditions [3]. The RP translates complex motions into more unidirectional motions, benefiting from reduced wear due to decreased cross-shear on the UHMWPE compared with more multidirectional fixed bearing TKR. Therefore, TKR design is an important factor for reduction of UHMWPE wear.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 228 - 228
1 Sep 2005
McEwen HMJ Knight LA Farrar R Stone MH Taylor M Fisher J
Full Access

Introduction: Reduction of ultra high molecular weight polyethylene (UHMWPE) wear in total knee replacement (TKR) bearings may delay the onset of osteolysis and subsequent loosening of components. This study used finite element (FE) modelling and in vitro simulator testing to investigate the effect of wear path geometry on UHMWPE surface wear.

Methods: The wear of PFC Sigma fixed bearing TKRs (DePuy) was investigated using a six-station force/ displacement controlled knee simulator (frequency 1 Hz) using previously developed methods [1]. High, intermediate and low kinematic inputs were simulated for up to five million cycles (Table 1) with identical flexion-extension and axial loading for all components. This kinematic data was also applied to a FE model of the PFC Sigma TKR and run using PAM-CRASH-SAFE software. The anterior-posterior (AP), medial-lateral (ML) and inferior-superior data were recorded and the resulting wear paths generated by selecting nodes from the contacting surface of the polyethylene relative to the femoral.

Results and Discussion: The mean wear rates with 95% confidence limits on the simulator when subjected to high, intermediate and low kinematics were 22.75 ± 5.95, 9.85 ± 3.7 and 5.2 ± 3.77 mm3 per million cycles, respectively. All FE models exhibited looped wear paths. An example wear path for the first 60% of the gait cycle for a lateral node is displayed in Figure I. The high kinematics model generated the greatest ML displacement and similar AP displacement to the intermediate kinematics model. The low kinematics model showed least ML and AP displacements. The AP displacements for medial wear paths differed little when subjected to the different kinematics. A looped wear path on the surface of UHMWPE results in greater cross shear transverse to the principal direction of motion, which is parallel to AP displacement in TKR and is the axis along which strain hardening occurs. This study revealed that increased AP displacement and tibial rotation kinematics generate more looped wear paths, increase ML and AP displacements on the surface of fixed bearing TKR and result in greater cross shear which ultimately increases UHMWPE surface wear.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 228 - 228
1 Sep 2005
Williams S Stewart T Ingham E Stone M Fisher J
Full Access

Introduction: Following hip replacement surgery the tension of the soft tissues and the laxity of the joint may vary. Variations in surgical approach, technique and fixation method may influence the effective joint laxity and the level of force applied across the prostheses during the swing phase of gait. The aim of this study was to investigate the effect of different swing phase load conditions on the wear metal-on-metal hip prostheses using a hip simulator.

Methods: Cobalt chrome metal-on-metal bearings, 28mm in diameter were tested for five million cycles in a Prosim hip simulator with flexion-extension and internal-external rotation kinematic inputs. A Paul-type twin peak loading curve was applied, which was modified to provide three different swing phase load conditions;

Low positive swing phase load (< 100N)

Positive swing phase load (300N, as per standard ISO 14242–1)

Negative swing phase load, leading to microseparation and joint laxity.

All tests were carried out in 25% (v/v) new-born bovine serum, with gravimetric wear measurements completed every million cycles.

Results: The wear rates for the different swing phase conditions are shown in Figure I. Elevating the swing phase load from 100N to 300N (ISO load) increased the overall wear rate by 10-fold. Introducing microseparation into the gait cycle increased wear by a further 3-fold. These results indicate the sensitivity of metal-on-metal bearing wear to swing phase load conditions and joint laxity.

Discussion: Little attention to date has been paid to the importance of joint laxity and swing phase load on the wear rate of hip replacements. Elevation of wear rates with increased swing phase load was probably due to the depletion of fluid film lubrication. This was consistent with the findings under stop-start motion [Medley et al., 2002] and demonstrates the dependency of metal-on-metal hip replacements on fluid film lubrication conditions. Testing with a negative swing phase load elevated wear due to microseparation of the components, the head contacted the insert rim at heel strike which caused a stress concentration and damage to the insert rim. The results demonstrate that the wear performance of metal-on-metal hip replacements is highly dependent on swing phase load conditions. It is postulated that the fixation method and surgical technique can effect the swing phase load; over tensioning of the soft tissue may increase the swing phase load, whereas joint laxity will cause a negative swing phase load and possibly microseparation.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 281 - 281
1 Sep 2005
van der Jagt D Schepers A Fisher J
Full Access

Osteolysis and subsequent mechanical loosening often occurs in hip arthroplasties using polyethylene-on-ceramic (POC) bearings. This has prompted an ongoing search for alternative bearing surfaces. Ceramic-on-ceramic (COC) and metal-on-metal (MOM) prostheses are widely used, with good clinical results. Using hip simulator studies, we compared ceramic-on-metal (COM) and MOM prostheses.

We found COM pairings had 100-fold lower wear rates than MOM. The wear particles from both articulations were oval to round in shape and in the nanometer size range, with the COM producing smaller particles than the MOM. In both pairings, particle size decreased as the bearings bedded in. The volumetric particle loads were far smaller with COM bearing-surfaces than in currently-used MOM prostheses.

These findings have encouraged us to investigate the use of these novel bearing surfaces. Ethical approval has been obtained, and a prospective randomised clinical trial comparing POC, MOM, COC and COM bearing surfaces has started.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 226 - 227
1 Sep 2005
Ingram J Ingham E Tipper J Fisher J
Full Access

Ultra high molecular weight polyethylene (UHMWPE) wear debris induced osteolysis is a major cause of long term failure of total hip replacements. Particles in the 0.1–1.0_m size range are believed to have greater osteolytic potential than larger wear debris. Crosslinked polyethylenes have been shown to have improved wear resistance compared to non-crosslinked materials on smooth counterfaces, however wear debris from cross-linked UHMWPE has been shown to be smaller than that produced from non-crosslinked materials. The aim of this study was to compare the wear, wear debris and biological activity of non-crosslinked and crosslinked polyethylenes when worn against smooth and scratched counterfaces.

Materials and Methods: Test pins were machined from non-crosslinked GUR1050 and GUR1050 crosslinked with either 5 or 10Mrad of gamma irradiation. Sterile endotoxin free clinically relevant wear debris was generated using a bi-directional pin-on-plate test rig. Tests were performed on scratched (Rp=1.0mm) or smooth (Ra=0.02mm) counterfaces. Particles were cultured with murine macrophages at particle volume (mm3): cell number ratios of 50:1,10:1,1:1 and 0.1:1. The levels of TNF-a produced were determined by ELISA following 0,2,4,6,8,24 and 48 hours of culture.

Results: On both smooth and scratched counterfaces crosslinked polyethylene had lower wear than non-crosslinked polyethylene. Determination of the volume distribution of the wear debris demonstrated a greater percentage of wear debris in the submicrometre size range from crosslinked material when worn on scratched counterfaces. Analysis of the debris when worn on smooth counterfaces showed a further reduction in size of debris with particles observed below 100nm in size which reduced the percentage of debris in the sub-micrometre size range for both materials. Crosslinked material worn against scratched counterfaces generated wear debris that was able to stimulate macrophages to produce significant levels of TNF-a after just six hours of co-culture at the highest volumetric concentration and after 24 hours at lower volumetric concentrations. The non-crosslinked material was able to stimulate macrophages only after 24 hours at the highest volumetric concentration. There were no differences between the biological activity of the particles from the 3 materials articulating on the smooth counterfaces they were only able to stimulate significant TNF-a release following 24 hour with the highest volumetric concentration.

Discussion: Although wear resistance is increased by cross-linking on both smooth and scratched counterfaces, when worn against a scratched counterface crosslinked polyethylene generated a greater percentage of debris in the 0.1–1.0mm size range than non-crosslinked polyethylene and this led to an increase in biological activity. However when worn against smooth counterfaces the production of nanometre size wear particles by both materials reduced the volume of debris in the 0.1–1.0mm size range which in turn lead to a lower biological activity.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 147 - 147
1 Apr 2005
Fehily M Stewart T Fisher J
Full Access

Introduction The historical degradation of polyethylene produced a direct relationship between contact stress and wear in knee prostheses(1). However, with the recent introduction of stabilised polyethylene and designs with reduced contact stress, the significance of this relationship has not been re-assessed. The purpose of this study was to analyse the contact mechanics of three currently available knee designs (two rotating platform and one fixed bearing) prior to and after long term simulator wear testing.

Materials and Methods Implants (six of each design) were loaded with 2600N at flexion angles of 0°, 30° and 60°. Contact areas were measured using Fuji Pre-scale pressure sensitive film, which was scanned and digitised using Image Pro Plus software.

Results The average contact stresses of the worn knee components are shown in Figure 1. Previously reported wear results for the three designs are shown in Figure 2 (1,2). Stresses reduced slightly following wear testing.

Conclusion The three designs tested produced stresses below the elastic limit of the polymer at all flexion angles. The two rotating platform designs had significantly reduced stress compared to the fixed bearing design. Both rotating platform designs tested de-couple the rotation and produce reduced cross-shear compared to the fixed bearing design. It is postulated that both low stress and reduced cross-shear are important in reducing the wear of knee prostheses.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 405 - 405
1 Apr 2004
Streicher R Fisher J Insley G
Full Access

Introduction: Alumina exhibits excellent hardness and wear properties, however it is a brittle material with an inherent risk of fracture. Therefore, the feasibility of a new family of Alumina based ceramics with improved toughness for hip joint articulation applications was investigated.

Materials and methods: The addition of 25% Zirconia to Alumina during the manufacturing process to achieve the objective has been proposed. Two types of Zirconia Toughened Alumina (ZTA) ceramics were analysed; one binary and the other pentary by composition. Following tests were used: structural analysis, mechanical testing of components, determination of hardness (HV), fl exural strength (ASTM C1161), indentation fracture toughness, X-ray diffraction (XRD), aging (accelerated and real-time) and wear simulator testing. The test data was analysed by descriptive statistics.

Results: The structure of the two ZTAs is similar with small-grained Zirconia dispersed in a matrix of larger grained Alumina. X-ray diffraction analysis showed no phase transformation after accelerated and real-time aging and the strength values did not change. Flexural strength was statistically significant increased by > 50% over Alumina. The indentation fracture toughness was also increased by up to 50% while the hardness of the ZTA ceramics was not affected. The wear testing showed that ZTA – ZTA couples articulating against themselves produce not significant lower wear than Alumina – Alumina couples, but the combination of ZTA ball-heads with Alumina inserts produced significantly lower wear rates, also in micro-separation.

Conclusions: The toughness and bending strength of the Alumina was successfully increased while all other properties of the Alumina were maintained. No change in properties after aging was observed and the wear properties of the ZTA were lower wear than for Alumina. Zirconia Toughened Alumina looks promising for the next generation of fracture and wear resistant ceramic bearings.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 8 - 8
1 Jan 2004
McEwen H Barnett P Auger D Farrar R Stone M Fisher J
Full Access

Reduction of ultra high molecular weight polyethylene (UHMWPE) surface wear in total knee replacements (TKR) may delay the onset of osteolysis and loosening of components. This study examined the wear of fixed bearing and rotating platform (RP) mobile bearing TKR with two different bearing materials.

Testing was completed on a Leeds ProSim six-station knee simulator under ‘high’ kinematics [1]. PFC Sigma fixed bearing and LCS RP mobile bearing knee designs were tested (DePuy). Non-crosslinked (non-irradiated (NI) or gas plasma (GP) sterilised) and moderately cross-linked (4.0 MRad gamma irradiation sterilisation under vacuum (GVF)) GUR1020 UHMWPE bearings were investigated for each TKR design. Components were tested in 25 % bovine serum solution for up to five million cycles (frequency = 1 Hz). Volumetric wear was determined from gravimetric measurements of the inserts.

The 1020 GVF fixed bearings exhibited a wear rate of 16.4 ± 4 mm3 per million cycles (MC). This was significantly greater (p < 0.05) than wear of the same bearing material in the rotating platform mobile bearing TKR (10.85 ± 2.39 mm3/MC). Similarly, when uncross-linked 1020 UHMWPE was introduced as the bearing material, a significant (p < 0.05) reduction in wear was observed between the fixed bearing (16 ± 7 mm3/MC) and the RP knee designs (5.85 ± 2.05 mm3/MC).

The RP design decouples the motions between the femoral-insert and tray-insert articulating surfaces. This translates complex knee motions into more unidirectional motions at two interfaces, thus reducing wear under high kinematics compared with fixed bearing TKR. This significant reduction in wear was observed with uncross-linked and moderately cross-linked bearing materials. Design of TKR is an important factor that influences UHMWPE surface wear and may affect long-term success of knee replacements in highly active patients.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 8 - 8
1 Jan 2004
Williams S Stewart T Ingham E Stone M Fisher J
Full Access

Following total hip replacement surgery, fluroscopy studies have shown that a mean separation of 2 mm can occur between CoCr femoral heads and UHMWPE acetabular cups during the swing phase of gait [1]. In vivo and in vitro studies [2, 3] of alumina ceramic on ceramic hip replacements have demonstrated that swing phase microseparation followed by the impact of the femoral head on the acetabular insert rim can lead to accelerated wear. However, wear remains low. A similar trend was observed when metal on metal hip replacements were tested under microseparation conditions [4]. The purpose of the current study was to examine the wear of ceramic on polyethylene bearings under standard and microseparation conditions.

A physiological hip simulator was used, loads and motions were applied to approximate in vivo conditions. The alumina ceramic heads and polyethylene cups were 28 mm in diameter and were tested for 5 million cycles in 25% new born calf serum at 1 Hertz. Microseparation was achieved by displacing the femoral head inferiorly during swing phase, where the head contacted the inferior cup rim and was laterally displaced. On heel strike the head contacted the superior cup rim prior to relocation.

The volumetric wear of the polyethylene inserts was approximately four times less under microseparation conditions (5.6 ± 5.3 mm3 per million cycles), in comparison to standard conditions (25.6 ± 5.3 mm3 per million cycles). Deformation of the cup rim was observed, but some of this was attributed to creep. It is postulated that this reduction in wear was due to the separation of the components in swing phase improving the entrapment of lubricant, hence reducing wear via a squeeze film lubrication mechanism. In conclusion, surgical procedures that produce a small and controlled amount of joint laxity and microseparation may lead to a reduction in wear of the polyethylene acetabular cups.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear.

In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA.

Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris.

Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 57 - 57
1 Jan 2003
Williams S Stewart TD Ingham E Stone MH Fisher J
Full Access

In vivo and in vitro studies of ceramic on ceramic (COC) bearings have demonstrated that swing phase microseparation followed by the impact of the femoral head on the superior acetabular insert rim leads to accelerated wear. However, resultant wear remained low. The wear of ceramic on polyethylene (COP) and metal on metal (MOM) couples under swing phase microseparation is unknown, this study aimed to compare the wear of these total hip replacements under standard and microseparation conditions.

A physiological hip simulator was used, loads and motions were applied to approximate in vivo conditions. Microseparation was achieved by displacing the femoral head inferiorly during swing phase, the head contacted the inferior cup rim and was laterally displaced. On heel strike the head contacted the superior cup rim prior to relocation. Components (as shown in table 1) were tested for 5 million cycles, at a frequency of 1 hertz in 25% (v/v) new born calf serum. Under standard conditions, wear of COC and MOM bearings was significantly lower than wear of COP couples. Under microseparation conditions the COC and MOM wear increased by 4 and 25 times respectively. Microseparation conditions reduced wear of COP couples by a factor of 4. Creep deformation and damage to the UHMWPE cup rim was observed, however, wear remained low. It is postulated that this reduction in polyethylene wear is due to the separation of the components in swing phase improving the entrapment of lubricant, hence wear is reduced via a squeeze film lubrication mechanism.