header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 98 - 98
11 Apr 2023
Williams D Chapman G Esquivel L Brockett C
Full Access

To be able to assess the biomechanical and functional effects of ankle injury and disease it is necessary to characterise healthy ankle kinematics. Due to the anatomical complexity of the ankle, it is difficult to accurately measure the Tibiotalar and Subtalar joint angles using traditional marker-based motion capture techniques. Biplane Video X-ray (BVX) is an imaging technique that allows direct measurement of individual bones using high-speed, dynamic X-rays.

The objective is to develop an in-vivo protocol for the hindfoot looking at the tibiotalar and subtalar joint during different activities of living.

A bespoke raised walkway was manufactured to position the foot and ankle inside the field of view of the BVX system. Three healthy volunteers performed three gait and step-down trials while capturing Biplane Video X-Ray (125Hz, 1.25ms, 80kVp and 160 mA) and underwent MR imaging (Magnetom 3T Prisma, Siemens) which were manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Calcaneus and Tibia were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). Kinematics were calculated using MATLAB (MathWorks, Inc. USA).

Pilot results showed that for the subtalar joint there was greater range of motion (ROM) for Inversion and Dorsiflexion angles during stance phase of gait and reduced ROM for Internal Rotation compared with step down. For the tibiotalar joint, Gait had greater inversion and internal rotation ROM and reduced dorsiflexion ROM when compared with step down.

The developed protocol successfully calculated the in-vivo kinematics of the tibiotalar and subtalar joints for different dynamic activities of daily living. These pilot results show the different kinematic profiles between two different activities of daily living. Future work will investigate translation kinematics of the two joints to fully characterise healthy kinematics.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 64 - 64
1 Mar 2021
Esquivel L Chapman G Holt C Brockett C Williams D
Full Access

Abstract

Skeletal kinematics are traditionally measured by motion analysis methods such as optical motion capture (OMC). While easy to carry out and clinically relevant for certain applications, it is not suitable for analysing the ankle joint due to its anatomical complexity. A greater understanding of the function of healthy ankle joints could lead to an improvement in the success of ankle-replacement surgeries. Biplane video X-ray (BVX) is a technique that allows direct measurement of individual bones using highspeed, dynamic X-Rays.

Objective

To develop a protocol to quantify in-vivo foot and ankle kinematics using a bespoke High-speed Dynamic Biplane X-ray system combined with OMC.

Methods

Two healthy volunteers performed five level walks and step-down trials while simultaneous capturing BVX and synchronised OMC. participants undertook MR imaging (Magnetom 3T Prisma, Siemens) which was manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Tibia and Calcaneus were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). OMC markers were tracked (QTM, Qualisys) and processed using Visual 3D (C-motion, Inc.).