header advert
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims

Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies.

Methods

Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 98 - 98
1 Feb 2020
Doyle R van Arkel R Jeffers J
Full Access

Background

Cementless acetabular cups rely on press-fit fixation for initial stability; an essential pre-requisite to implant longevity. Impaction is used to seat an oversized implant in a pre-prepared bone cavity, generating bone strain, and ‘grip’ on the implant. In certain cases (such as during revision) initial fixation is more difficult to obtain due to poorer bone quality. This increases the chance of loosening and instability. No current study evaluates how a surgeon's impaction technique (mallet mass, mallet velocity and number of strikes) may be used to maximise cup fixation and seating.

Questions/purposes

(1) How does impaction technique affect a) bone strain & fixation and b) seating in different density bones? (2) Can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular cup?


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 121 - 121
1 Apr 2019
Doyle R Jeffers J
Full Access

Incidence of intraoperative fracture during cementless Total Hip Arthroplasty (THA) is increasing. This is attributed to factors such as an increase in revision procedures and the favour of cementless fixation. Intraoperative fractures often occur during the seating of cementless components. A surgical mallet and introducer are used to generate the large impaction forces necessary to seat the component, sometimes leading to excessive hoop strain in the bone. The mechanisms of bone strain during impaction are complex and occur over very short timeframes. For this reason experimental and simulation models often focus on strain shortly after the implant is introduced, or seat it quasi-statically. This may not produce a realistic representation of the magnitude of strain in the bone and dangerously under-represent fracture risk.

This in-vitro study seeks to determine whether strain induced during impaction is similar both during the strike (dynamic strain) and shortly after the strike has occurred (post-strike strain). It is also asked whether post-strike strain is a reliable predictor of dynamic strain.

A custom drop tower was used to seat acetabular components in 45 Sawbones models (SKU: 1522–02, Malmo, Sweden), CNC milled to represent the acetabular cavity. Ten strikes were used to seat each cup. 3 strike velocities (1.5 m/s, 2.75 m/s, 4 m/s) and 3 impact masses (600 g, 1.2 kg, 1.8 kg) were chosen to represent 9 different surgical scenarios. Two strain gages per Sawbone were mounted on the surface of the block, 2 mm from the rim of the cavity. Strain data was acquired at 50 khz. Each strain trace was then analysed to determine the peak dynamic strain during mallet strike and the static strain post-strike.

A typical strain pattern was observed during seating. An initial pre-strike strain is followed by a larger dynamic peak as the implant is progressed into the bone cavity. Strain subsequently settles at a lower (tensile) value than peak dynamic post-strike, but higher than pre-strike strain. Over the 450 strikes conducted dynamic strain was on average 3.39 times larger than post-strike strain. A statistically significant linear relationship was observed between the magnitude of post-strike and dynamic strain (adjusted R2=0.391, p<0.005). This indicates that, for a known scenario, post-strike strain can be used as an indicator for dynamic peak strain. However when only the maximum dynamic and post-strike strains were taken from across the 10 strikes used to seat the implant, the relationship between the two strains was not significant (R2=0.300, p=0.73). This may be due to the fact that the two maximums did not often occur on the same strike. On average, max dynamic strain occurred 1.7 strikes after max post-strike strain.

We conclude that peak dynamic strain is much larger than the strain immediately post-strike in a synthetic bone model. It is shown that post-strike strain is not a good predictor of dynamic strain when the max strain during any strike to seat the component is considered, or variables (such as mallet mass or velocity) are changed. It is important to consider dynamic strain in bone as well as post-strike strain in experimental or simulated bone models to ensure the most reliable prediction of fracture.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 123 - 123
1 Apr 2019
Doyle R Jeffers J
Full Access

Initial stability of cementless components in bone is essential for longevity of Total Hip Replacements. Fixation is provided by press-fit: seating an implant in an under-reamed bone cavity with mallet strikes (impaction). Excessive impaction energy has been shown to increase the risk of periprosthetic fracture of bone. However, if implants are not adequately seated they may lack the stability required for bone ingrowth. Ideal fixation would maximise implant stability but would minimise peak strain in bone, reducing the risk of fracture.

This in-vitro study examines the influence of impaction energy and number of seating strikes upon implant push-out force (indicating stability) and peak dynamic strain in bone substitute (indicating likelihood of fracture). The ratio of these factors is given as an indicator of successful impaction strategy.

A custom drop tower with simulated hip compliance was used to seat acetabular cups in 30 Sawbone blocks with CNC milled acetabular cavities. 3 impaction energies were selected; low (0.7j), medium (4.5j) and high (14.4j), representing the wide range of values measured during surgery. Each Sawbone was instrumented with strain gauges, secured on the block surface close to the acetabular cavity (Figure 1). Strain gauge data was acquired at 50 khz with peak tensile strain recorded for each strike. An optical tracker was used to determine the polar gap between the cup and Sawbone cavity during seating. Initially 10 strikes were used to seat each cup. Tracking data were then used to determine at which strike the cups progressed less than 10% of the final polar gap. This value was taken as number of strikes to complete seating. Tests were repeated with fresh Sawbone, striking each cup the number of times required to seat. Following each seating peak push-out forces of the cups were recorded using a compression testing machine.

10, 5 and 2 strikes were required to seat the acetabular cups for the low, medium and high energies respectively. It was found that strain in the Sawbone peaked around the number of strikes to complete seating and subsequently decreased. This trend was particularly pronounced in the high energy group. An increase in Sawbone strain during seating was observed with increasing energy (270 ± 29 µε [SD], 519 ± 91 µε and 585 ± 183 µε at low, medium and high energies respectively). The highest push-out force was achieved at medium strike energy (261 ± 46N). The ratio between push-out and strain was highest for medium strike energy (0.50 ± 0.095 N/µε). Push-out force was similar after 5 and 10 strikes for the medium energy strike. However push-out recorded at ten strikes for the high energy group was significantly lower than for 2 strikes (<40 ± 19 N, p<0.05).

These results indicate that a medium strike energy with an appropriate number of seating strikes maximizes initial implant stability for a given peak bone strain. It is also shown that impaction with an excessive strike energy may greatly reduce fixation strength while inducing a very high peak dynamic strain in the bone. Surgeons should take care to avoid an excessive number of impaction strikes at high energy.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 103 - 103
1 Feb 2017
Doyle R Boughton O Plant D Desoutter G Cobb J Jeffers J
Full Access

Appropriate seating of acetabular and femoral components during total hip arthroplasty (THA) surgery is essential for implant longevity. Additionally, the appropriate assembly of components is essential for proper function, for example to prevent taper corrosion or acetabular component disassembly. However the current understanding of the forces and energies imparted during surgery is sparse. Perhaps more importantly, there exists a risk that much of the preclinical testing performed to develop implants and surgical techniques do not apply the appropriate boundary conditions to surgical impaction and component assembly, leading to the possibility of huge overestimations in impaction force.

This in-vitro study examines the influence of mechanical boundary condition parameters that affect the forces imparted to implant and patient during THA surgery; including the attenuation of two common types of acetabular cup introducer and the hard tissue (pelvic) boundary conditions.

A drop tower test-rig that allows full customisation of impaction and implantation parameters was built, with pelvis boundary conditions simulated with silicone cylinders using adjustable geometry to vary stiffness and damping. The least stiff setup represented a large, unbolstered patient on the operating table. A medium stiffness setup represented a slim, well bolstered patient. An extremely stiff, metal boundary was selected to replicate the pre-clinical testing conditions usually employed in implant or instrument testing, where impact testing takes place in a vice, or metal test frame. For each of these stiffness scenarios, piezo-load cells and LVDTs were used to measure forces and displacement of the pelvis model. We also investigated the use of two common implant introducers; a straight and a bent introducer. The latter is often used for large patients or for specific approaches (e.g. direct anterior). In total, 180 drop weight tests and 120 strikes by an orthopaedic surgeon were measured.

For the drop weight testing the peak force measured varied between 7.6kN and 0.4kN for stiffest and softest support conditions respectively. When the surgeon applied the impact strike manually, the range was between 13.2kN and 0.8kN for the stiffest and softest support conditions respectively (Figure 1). Using the bent introducer attenuated the load by between 13.0% and 115% compared to the straight introducer (Figure 1).

Pelvic boundary conditions are overlooked in much of the literature on implant seating or assembly in THA surgery. In laboratory settings with impaction performed on a workbench or frame of a materials testing machine, high forces may be sufficient to seat or assemble implants. However our data show that these high forces will not be replicated in vivo, and this could be a causative factor in poor assembly of acetabular components or femoral head/stem tapers, which can lead to clinical problems like disassembly or crevice corrosion.

We found the geometry of the introducer and the stiffness of the pelvis support had significant attenuating influence. We also found that the surgeon does not compensate for these differences, resulting in vast differences in the delivered strike force. It is recommended these factors are carefully considered when designing surgical tools and in particular conducting pre-clinical testing.