header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 376 - 382
1 Mar 2020
Pesenti S Lafage R Henry B Kim HJ Bolzinger M Elysée J Cunningham M Choufani E Lafage V Blanco J Jouve J Widmann R

Aims

To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS).

Methods

We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2010
O’Loughlin P Cunningham M Tomin E Boatey J Lane J
Full Access

Introduction/Background: Significant limitations exist in the treatment of segmental defects or non-unions. Several investigators have developed methods in rats to synthesize ‘neo-bone’ within a mold for transfer and bone replacement in vivo. To better understand the critical biologic steps, it is desirable to use murine knockout models. Consequently, there is a need for a murine model of molded bone formation.

Materials/Methods: Biocompatible silicone chambers were implanted over the distal portion of the inferior epigastric artery in each recipient mouse. Bone marrow was implanted into these chambers along with 10 microliters of BMP-7. At two weeks the animals were euthanized and the chambers explanted. Both faxitron and histological analysis was performed to characterize the contents of the chambers.

Results: In this model, ossicle formation required the combination of viable donor marrow cells, an osteoinductive signal (BMP-7), and a patent vascular pedicle. Ossicle size and shape reflected the shape and dimensions of the interior of the chamber. De novo bone was produced in nine of nine chambers.

Discussion: Currently no commercially available genetically labelled rat allows the tracking of specific cells in bone formation. Crucially, this study establishes the feasibility and reproducibility of the bone chamber model in a mouse.

Conclusion: In this study we have established the vascularized neo-ossicle model in a murine model. This model may be used to track cell populations and develop a greater understanding of the critical biological steps in de novo bone formation.