header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_17 | Pages 2 - 2
1 Dec 2015
Murray I Gonzalez Z West C Miranda-Carboni G Simpson A Corselli M Péault B
Full Access

Mesenchymal stem cells (MSCs) reside around blood vessels in all organs. This reservoir of progenitors can be ‘recruited’ in response to injury. The ability to manipulate stem cells therapeutically within injured tissue provides an attractive alternative to transplantation. Stem cells are regulated by neighbouring cells. We hypothesized that endothelial cells (ECs) influence MSC differentiation into bone and fat.

MSCs were sorted from fat using fluorescent activated sorting. Their capacity to differentiate into bone, fat and cartilage was used to confirm MSC phenotype. MSCs and ECs were cultured in two-dimensions (standard culture dishes) and three-dimensions (vascular networks suspended in gel). Cocultures were exposed to osteogenic and adipogenic media. The role of EC-released factors on MSC differentiation was determined using a system in which cells share media but do not contact. Wnt pathway modulators were used to investigate the role of Wnt signalling.

MSCs differentiated into bone, fat and cartilage. MSCs and ECs integrated in two- and three-dimensions. MSCs and ECs formed vessel-like structures in three-dimensions. When cultured with ECs, MSC differentiation to bone was accelerated while differentiation to fat was inhibited. This effect on osteogenesis was maintained when cells shared media but did not contact. Coculture with Wnt modulators confirmed that this effect is in part, mediated through Wnt signalling.

Our data suggest that ECs influence MSC differentiation. Therapeutic targeting of EC-MSCs signalling may enable manipulation of MSCs in vivo avoiding the need for cell transplantation. This could enable trauma and orthopaedic patients who have healthy resident stem cells to self-repair.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.