header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 118 - 118
1 Feb 2020
Mangiapani D Carlson E Schaeffer J Hofmann A
Full Access

INTRODUCTION

Over the past 40 years of knee arthroplasty, significant advances have been made in the design of knee implants, resulting in high patient satisfaction. Patellar tracking has been central to improving the patient experience, with modern designs including an optimized Q-angle, deepened trochlear groove, and thin anterior flange.[1–4] Though many of today's femoral components are specific for the left and right sides, Total Joint Orthopedics’ (TJO) Klassic® Knee System features a universal design to achieve operating room efficiencies while providing all the advancements of a modern knee. The Klassic Femur achieves this through a patented double Q-angle to provide excellent patellar tracking whether implanted in the left or the right knee (Figure 1). The present study examines a prospective cohort of 145 consecutive TKA's performed using a modern universal femur and considers patients’ pre- and post-operative Knee Society Clinical Rating System score (KSS).

METHODS AND MATERIALS

145 primary total knee arthroplasties (TKA) were performed during the study using a measured resection technique with a slope-matching tibial cut for all patients. The posterior cruciate ligament (PCL) was sacrificed to accommodate an ultra-congruent polyethylene insert. The distal femur was cut at five degrees (5°) valgus; the tibia was resected neutral (0°) alignment for valgus legs and in two degrees (2°) of varus for varus alignment. The patella was resurfaced for all patients. Patients were followed annually for up to 46 months and were evaluated using the KSS score on a 200-point scale.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 64 - 64
1 Feb 2020
Darwish O Grover H McHugh D Carlson E Dacus E Van Citters D
Full Access

Introduction

Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate.

Materials and Methods

An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles.