header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 111 - 111
1 Nov 2018
Silva JC Moura C Borrecho G de Matos AA Cabral JMS Linhardt RJ Ferreira FC
Full Access

Bioreactors have been used in articular cartilage tissue engineering (AC-TE) to apply different mechanical stimuli in an attempt to better mimic the native AC microenvironment. However, these systems are often highly complex, costly and not very versatile. In this work, we propose a simple and customizable perfusion bioreactor fabricated by 3D-extrusion to study the effect of shear stress in human bone-marrow mesenchymal stem cells (hBMSC) cultured in 3D porous polycaprolactone (PCL) scaffolds. Prototype models were designed in a CAD-software to perfectly fit the scaffolds and computational fluid dynamics analysis was used to predict the fluid velocities and shear stress forces inside the bioreactor. For the culture studies, hBMSC-PCL constructs were cultured under static expansion for 2 weeks and then transferred to the ABS-extruded bioreactors for continuous perfusion culture (0.2mL/min) under chondrogenic induction for additional 3 weeks. Perfused constructs showed similar cell proliferation and higher sGAG production in comparison to the static counterparts (bioreactor without perfusion). Constructs exposed to shear stress stimuli presented higher expressions of chondrogenic genes (COLII/Sox9/Aggrecan) and reduced expressions of COLI and Runx2 (osteogenic) than static group. However, the higher expression of COLX in the perfused constructs suggests a shear stress role in AC hypertrophy. Both conditions (perfused/static) stained positively for GAG deposition and for the presence of collagen II and aggrecan. Overall, the results provide a proof-of-concept of our customizable extruded bioreactor envisaging applications as a platform for AC-TE repair strategies and in the development of more reliable in vitro models for disease modelling and drug screening.