header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 123 - 123
1 Nov 2018
Fernandez M Pandit A Biggs M
Full Access

Electromechanical coupling (piezoelectricity) is present in all living beings and provides basis for sense, thoughts and mechanisms of tissue regeneration. Herein, we ventured to assess the influence of MMC in mesenchymal stem cell culture. In this study, we fabricated piezoelectric regenerative scaffolds to assess the role of electromechamical stimulation on tendon regeneration. Tendon cells were selectively stimulated in vitro by mechanical or electromechanical cues using non-piezoelectric or piezoelectric scaffolds and optimal mechanical loading (4% deformation at 0.5 Hz). This was followed up with an in vivo study to assess tendon regeneration in a rat Achilles tendon injury model. P(VDF-TrFE), scaffolds were observed to mimic the fibrous structure of tendon tissue (figure 1) and were capable of producing electrical charges up to 17 pC/N when mechanically loaded (figure 1. Genes associated with tendon specific markers (Col.I/Col III, Scx and Mkx) and mechanosensitive ion channels such as PIEZO1, TRAAK and TRPV1 were significantly upregulated (figure 2). The upregulated genes were validated with individual real time Q-PCR and bioinformatics revealed a possible regulated function. Those results were further validated in vivo. Protein expression of repaired tendons showed a correlation between increase in expression of tendon related proteins SCX, TNMD, Decorin and expression of ion channels KCNK2, TRAAK and TRPV1. Collectively, these data clearly illustrate that scaffolds made of PVDF-TrFE can produce electrical charges when mechanically loaded. Moreover, gene and protein analyses showed a positive regulation of tendon specific markers through activation mechanosensitive voltage-gated genes.

For any figures or tables, please contact authors directly.


Cells directly probe and respond to the physicomechanical properties of their extracellular environment, a dynamic process which has been shown to play a key role in regulating both cellular adhesive processes and differential function. Recent studies indicate that stem cells show lineage-specific differentiation when cultured on substrates approximating the stiffness profiles of specific tissues. Although tissues are associated with ranging Young's modulus values for bulk rigidity, at the sub-cellular level, and particularly at the micro- and nanoscales, tissues are comprised of heterogeneous distributions of rigidity.

Lithographic processes have been widely explored in cell biology for the generation of analytical substrates to probe cellular physicomechanical responses. In this work, we show for the first time that that direct-write e-beam exposure can significantly alter the rigidity of elastomeric PDMS substrates and develop a new class of two-dimensional elastomeric substrates with controlled patterned rigidity ranging from the micron to the nanoscale. The mechano-response of human mesenchymal stem cells to e-beam patterned substrates was subsequently probed in vitro and significant modulation of focal adhesion formation and osteochondral lineage commitment was observed as a function of both feature diameter and rigidity, establishing the groundwork for a new generation of biomimetic material interfaces.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 38 - 38
1 Jan 2017
Ryan C Biggs M Pandit A Zeugolis D
Full Access

Cell-based therapies require removal of cells from their optimal in vivotissue context and propagation in vitroto attain suitable number. However, bereft of their optimal tissue niche, cells lose their phenotype and with it their function and therapeutic potential. Biophysical signals, such as surface topography and substrate stiffness, and biochemical signals, such as collagen I, have been shown to maintain permanently differentiated cell phenotype and to precisely regulate stem cell lineage commitment (1, 2). Herein, we developed and characterised substrates of variable rigidity and constant nanotopographical features to offer control over cellular functions during ex vivoexpansion.

PDMS substrates with varying ratios of monomer to curing agent (0:1, 1:1, 5:1) were fabricated based on established protocols. Grooved substrates were created using a silinated wafer with groove dimensions of 2µm × 2µm × 2µm; planar control groups were created using flat glass. The aforementioned PDMS solutions were poured onto the wafer/glass, cured at 200 ºC and treated with oxygen plasma. Substrates were then investigated with/without collagen I coating. (0.1, 0.5, and 1 mg/ml). Atomic force microscopy (AFM) and optical profilometry were used to assess the topographical features of the substrates. Dynamic mechanical analysis (DMA) was used to determine the mechanical properties of the substrates. The simultaneous effect of surface topography / substrate rigidity on cell phenotype and function was assessed using human permanently differentiated cells (dermal fibroblasts, tenocytes) and stem cells (human bone marrow stem cells) and various morphometric and gene / protein assays.

PDMS substrates of varying stiffness (1000 kPa, 130 kPa, 50 kPa) can be made by varying the Sylgard ratio, while maintaining topographical features. Human adult dermal fibroblasts, tenocytes, and tenocytes attach, align, elongate and deposit aligned extracellular matrix on the grooved PDMS substrate surface of all 3 stiffnesses.

Preliminary in vitrodata indicate that surface topography and substrate stiffness play crucial role in maintaining cell phenotype and the prevention of phenotypic drift in vitro.