header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 19 - 19
7 Aug 2023
Langton D Bhalekar R Wells S Nargol M Waller S Wildberg L Tilley S Nargol A
Full Access

Abstract

Introduction

At our national explant retrieval unit, we identified an unusual pattern of backside-deformation on polyethylene (PE) inserts of contemporary total-knee-replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with central-locking trays. We reported that this backside-deformation appeared to be linked to tray debonding. Moreover, recent studies have shown high-rate of tray debonding in PS NexGen TKRs. Therefore, we hypothesised that backside deformation on PS inserts may be more than on CR inserts.

Methodology

We used peer-reviewed techniques to analyse changes in the bearing (wear rate) and backside surfaces (deformation) of PE inserts using coordinate measuring machines [N=61 NexGen (CR-39 and PS-22) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside-deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 14 - 14
7 Aug 2023
Langton D Bhalekar R Wells S Nargol M Haston S Natu S Nargol A
Full Access

Abstract

Introduction

Several studies have reported significant cobalt(Co) and chromium(Cr) elevations in the blood of patients with total-knee-replacements (TKRs), and histological signs of metal sensitivity have been reported in up to 44% of patients undergoing revision of their TKRs. We carried out this investigation to determine the source and quantity of metal release in TKRs.

Methodology

We identified all TKRs with polished CoCr trays (N=59) [Vanguard=29, Attune=4 and PFC=26]. These were analysed using peer-reviewed [coordinate-measuring-machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D-profilometry (surface roughness-Ra) and 4D-microscopy. Histological and blood metal ion concentration analyses were performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 31 - 31
1 Apr 2022
Langton D Bhalekar R Joyce T Shyam N Nargol M Pabbruwe M Su E Nargol A
Full Access

Cobalt chrome alloy is commonly used in joint replacement surgery. However, it is recognised that some patients develop lymphocyte mediated delayed type hypersensitivity (DTH) responses to this material, which may result in extensive bone and soft tissue destruction.

Phase 1. United Kingdom: From an existing database, we identified extreme phenotype patient groups following metal on metal (MoM) hip resurfacing or THR: ALVAL with low wearing prostheses; ALVAL with high wear; no ALVAL with high wear; and asymptomatic patients with implants in situ for longer than ten years. Class I and II HLA genotype frequency distributions were compared between these patients’ groups, and in silico peptide binding studies were carried out using validated methodology.

Phase 2. United Kingdom: We expanded the study to include more patients, including those with intermediary phenotypes to test whether an algorithm could be developed incorporating “risk genotypes”, patient age, sex and metal exposure. This model was trained in phase 3.

Phase 3. United Kingdom, Australia, United States. Patients from other centres were invited to give DNA samples. The data set was split in two. 70% was used to develop machine learning models to predict failure secondary to DTH. The predictions were tested using the remaining blinded 30% of data, using time-dependent AUROCs, and integrated calibration index performance statistics.

A total of 606 DNA samples, from 397 males and 209 female patients, were typed. This included 176 from patients with failed prostheses, and 430 from asymptomatic patients at a mean of >10 years follow up. C-index and ROC(t) scores suggested a high degree of discrimination, whilst the IBS indicated good calibration and further backed up the indication of high discriminatory ability. At ten years, the weighted mean survival probability error was < 4%.

At present, there are no tests in widespread clinical use which use a patient's genetic profile to guide implant selection or inform post-operative management. The algorithm described herein may address this issue and we suggest that the application may not be restricted to the field of MoM hip arthroplasty.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 17 - 17
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction

Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs.

Methods

A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm3) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 16 - 16
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction

The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study.

Methods

Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc). BIOLOX®delta ceramic femoral heads were mounted on 12/14 titanium (Ti6Al4V) trunnions. Wear of femoral heads, acetabular liners and trunnions was determined gravimetrically using the analytical balance. Roughness measurements (Sa) were taken on the articulating surfaces (pre and post-test) and on the trunnion surfaces (worn and unworn). Furthermore, Energy Dispersive X-ray Spectroscopy (EDX) was used to identify and quantify the wear debris present in the lubricant using scanning electron microscope (SEM).