header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 556 - 556
1 Nov 2011
King GJ Greeley GS Beaton BJ Ferreira LM Johnson JA
Full Access

Purpose: This in-vitro study examined the effect of simulated Colles fractures on load transmitted to the distal ulna, using an in-line load cell. Our hypothesis was distal radial fracture malposition will increase distal radial ulnar joint (DRUJ) load relative to the native position of the radius.

Method: Eight fresh frozen upper-extremities were mounted in a motion simulator which enabled active forearm rotation. An osteotomy was performed just proximal to the distal radioulnar joint, and a 3-degree of freedom modular appliance was implanted which simulated Colles type distal radial fracture deformities. This device allowed for accurate adjustment of dorsal angulation and translation (0, 10, 20 and 30 degrees dorsal angulation and 0, 5 and 10mm dorsal translation both isolated and in combination). A 6-DOF load cell was inserted in the distal ulna 1.5 cm proximal to the ulnar head to quantify DRUJ joint forces. Distal ulnar loading was measured following simulated distal radial deformities with both an intact and sectioned triangular fibrocartilage complex (TFCC).

Results: The maximum resultant transverse distal ulnar load occurred during active forearm pronation and supination. Increasing magnitudes of dorsal angulation and translation of the distal radius increased loading in the distal ulna. For pronation with the ligaments intact, the transverse resultant load for the non-fracture, native positioning was significantly lower (p< 0.05) than the majority of malpositioned cases except for the translations only (not combined with angulation). However, all fracture orientations for supination had an increased effect on the resultant loading (p< 0.05) when ligaments were intact. Greater forces were measured in the distal ulna when the TFCC intact relative to TFCC sectioning. Sectioning the TFCC eliminated the effect of fracture malposition for both pronation and supination. The range of maximum transverse force for intact pronation and supination was between 118& #61617;34N and 130& #61617;39N, respectively. Similarly, for sectioned pronation and supination, the maximum transverse forces were and 93& #61617;40N and 89& #61617;24N, respectively.

Conclusion: Malpositioning of distal radial fractures in dorsal translation and angulation was found to increase forces in the distal ulna, which may be an important source of residual pain following malunion of Colles fractures. Healing of the distal radius in an anatomic position resulted in the least forces. Sectioning the TFCC released the tethering effect of the radius on the ulna, decreasing DRUJ force. This is the first study of its kind to attempt to quantify the forces at the DRUJ as a result of Colles fractures, and these early findings provide important baseline information related to the biomechanics of the DRUJ.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 14 - 14
1 Mar 2010
Brownhill JR Beaton BJ Ferreira LM Johnson JA King GJW
Full Access

Purpose: Aseptic loosening is one of the leading causes of failure in total elbow arthroplasty. It is logical to postulate that incorrect implant positioning and alignment may lead to excessive loading and wear which can induce the loosening cascade. However, the effect of implant malalignment on wear inducing loads in the elbow is not yet known. This in-vitro study determined the effect of anterior malpositioning, and varus-valgus (VV) and internal-external (IE) malrotations on humeral stem loading in total elbow arthroplasty.

Method: The humeral, ulnar, and radial components of a linked total elbow arthroplasty were optimally positioned using computer navigation in eight cadaveric elbows, mounted in a load/motion control elbow simulator (age 75yrs, range 42–93; 5 male). A modular, humeral component was employed to generate implant malpositioning errors of ±6° VV, ±8° IE, and 5mm anterior. The implant was instrumented with strain gauges to quantify VV and IE bending loads during elbow flexion with the forearm in supination. Load output was combined using a sum-of-squares technique. Passive flexion was performed with the arm in the varus and valgus orientations; passive and active flexion were performed with the arm in the vertical orientation.

Results: With the arm (humerus) in the vertical orientation, bending loads increased between 418Nmm and 1618Nmm for all malaligned implant positions (p< 0.05). Passive flexion (1354±859Nmm) produced higher resultant loads for the optimally positioned implant than active (819±891Nmm) flexion (p< 0.05). Although it varied during flexion, loading with the arm in varus (2928±1273Nmm) or valgus (2494±743Nmm) orientations resulted in up to a three-fold increase in loading when compared to the vertical orientation (p< 0.01).

Conclusion: These data demonstrate that humeral component malpositioning increases loading in the implant, however further studies are required to determine the long term effect on polyethylene wear and component loosening. Prosthesis designs that replicate the native flexion-extension axis and make use of sophisticated instrumentation or computer assistance to achieve precise positioning during implantation should lead to improved arthroplasty durability. Also, loading was higher with the arm in varus or valgus orientations, suggesting that patients should avoid activities post-operatively that require their elbow to be positioned in this way.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 223 - 223
1 May 2009
Austman R Beaton BJ Dunning CE Gordon KD King GJ Quenneville CE
Full Access

Stress shielding (i.e. reduction in bone strains) in the distal ulna is commonly noted following ulnar head replacement arthroplasty. Optimal design parameters for distal ulnar implants, including the length of the stem, are currently unknown. The purpose of this study was to investigate the effect of stem length on bone strains along the length of the ulna.

Strain gauges were applied to each of eight cadaveric ulnae to measure bending loads at six locations along each ulna’s length (approximately 1.5, 2.5, 4.0, 6.0, 8.0, and 13.0cm from the ulnar head). The proximal portion of each bone was secured in a custom-designed jig. A materials testing machine applied loads (5–30N) to the ulnar head while native strains were recorded. The ulnar head was removed and the loading procedure repeated for cemented stainless steel stems 3 and 7cm in length, according to a previously reported technique (Austman et al, CORS 2006). Other stem lengths between 3 and 7cm were tested in 0.5cm intervals with a 20N load applied only. Data were analyzed using a two-way repeated measures ANOVA (á=0.05).

In general, distal bone strains increased as stem length decreased (e.g. average microstrains at the second distal-most gauges: 138±13 (7cm), 147±15 (6cm), 159±21 (5cm), 186±40 (4cm), 235±43 (3cm)). The native strains were different from all stem lengths for the four distal-most gauges (p< 0.05). No differences were found between any stem length and the native bone at the two proximal-most gauges. The 3cm stem replicated the native strains more closely than the 7cm, over all applied loads (e.g. average microstrains at the third gauge level for a 25N load: 357±59 (native), 396±74 (3cm), 257±34 (7cm)).

No stem length tested matched the native strains at all gauge locations. The 3cm stem results were closer to the native strains than the 7cm stem for all loads at gauges overtop of the stem. Overall, the 3cm stem produced the highest strains, and thus would likely result in less distal ulnar bone resorption after implantation. These results suggest that shorter (approximately 3cm) stems should be considered for distal ulnar implants to potentially reduce stress shielding, although this must be balanced by adequate stem length for fixation.