header advert
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 20 - 20
1 Nov 2021
Shimmin A Dhawan R Madurawe C Pierrepont J Baré J
Full Access

Adverse spinopelvic mobility (SPM) has been shown to increase risk of dislocation of primary total hip arthroplasty (THA). In patients undergoing THA, prevalence of adverse SPM has been shown to be as high as 41%. Stiff lumbar spine, large posterior standing pelvic tilt and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Dislocation rates for dual mobility articulations have been reported to be 0% to 1.1%. The aim of this study was to determine the early survivorship from the Australian National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a dual mobility articulation.

A multicentre study was performed using data from 229 patients undergoing primary THA, enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameters had a dual mobility articulation inserted at the time of their surgery. Average age was 76 (22 to 93) years and 63% were female. At a mean of 2.1 (1 – 3.3) years post-op, the AOANJRR was analysed for follow-up. Reasons for revision and types of revision were identified.

The AOANJRR reported two revisions. One due to infection and the second due to femoral component loosening. No revisions for dislocation were reported. One patient died with the prosthesis in situ. Kaplan Meier survival was 99.3% (CI 98.3% − 100%) at 2 years.

DM bearings reduce the risk of dislocation of primary THA in patients with adverse spine and pelvic mobility.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 184 - 191
1 Feb 2017
Pierrepont J Hawdon G Miles BP Connor BO Baré J Walter LR Marel E Solomon M McMahon S Shimmin AJ

Aims

The pelvis rotates in the sagittal plane during daily activities. These rotations have a direct effect on the functional orientation of the acetabulum. The aim of this study was to quantify changes in pelvic tilt between different functional positions.

Patients and Methods

Pre-operatively, pelvic tilt was measured in 1517 patients undergoing total hip arthroplasty (THA) in three functional positions – supine, standing and flexed seated (the moment when patients initiate rising from a seated position). Supine pelvic tilt was measured from CT scans, standing and flexed seated pelvic tilts were measured from standardised lateral radiographs. Anterior pelvic tilt was assigned a positive value.


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1342 - 1346
1 Oct 2016
Spencer-Gardner L Pierrepont J Topham M Baré J McMahon S Shimmin AJ

Aims

Accurate placement of the acetabular component during total hip arthroplasty (THA) is an important factor in the success of the procedure. However, the reported accuracy varies greatly and is dependent upon whether free hand or navigated techniques are used. The aim of this study was to assess the accuracy of an instrument system that incorporates 3D printed, patient-specific guides designed to optimise the placement of the acetabular component.

Patients and Methods

A total of 100 consecutive patients were prospectively enrolled and the accuracy of placement of the acetabular component was measured using post-operative CT scans.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 131 - 131
1 May 2016
Pierrepont J Riddell W Miles B Baré J Shimmin A
Full Access

Introduction

The primary purpose of Total Hip Arthroplasty (THA), aside from pain relief, is to restore hip biomechanics such that the patient experiences no discernible functional deficit, while also providing an environment conducive to implant longevity. Key factors in determining a successful THA include achieving the desired pre-operative femoral offset and leg length, as well as the restoration of range of motion (ROM). Minor leg length discrepancies (LLDs), less than a centimetre, are common after THA and usually well tolerated. However, in some patients, even these small discrepancies are a source of dissatisfaction. More significant discrepancies can be a risk factor for more serious concerns such as nerve injury, abnormal gait and chronic pain. The level of the femoral neck osteotomy is a critical step in reproducing a planned femoral stem position. Frequently the femoral osteotomy is too high and can lead to an increase in leg length and varus stem positioning. If the desired implant positions are identified from preoperative 3D templating, a planned femoral osteotomy can be used as a reference to recreate the correct leg length and offset. The aim of this study was assess the accuracy of a 3D printed patient-specific guide for delivering a pre-planned femoral neck osteotomy.

Methodology

A consecutive series of 33 patients, from two surgeons at a single institution, were sent for Trinity OPS pre-operative planning (Optimized Ortho, Australia). Trinity OPS is a pre-operative, dynamic, patient-specific modelling system for acetabular and femoral implant positioning. The system requires a pre-operative CT scan which allows patient specific implant sizing as well as positioning. Once the preoperative implant positioning plan was confirmed by the surgeon, a patient-specific guide was designed and printed to enable the planned level of femoral neck osteotomy to be achieved, Fig 1. All patients received a Trinity cementless acetabular component (Corin, UK) and a cementless TriFit TS femoral component (Corin, UK) through a posterior approach. The achieved level of osteotomy was confirmed postoperatively by doing a 3D/2D registration, in the Mimics X-ray Module (Materialise, Belgium), of the planned 3D resected femur to the postoperative AP radiograph, Fig 2. The image was then scaled and the difference between the planned and achieved level of osteotomy was measured (imatri Medical, South Africa), Fig 2.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 132 - 132
1 May 2016
Pierrepont J Feyen H Baré J Young D Miles B Shimmin A
Full Access

Introduction

Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading.

Methodology

Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 30 - 30
1 May 2016
Pierrepont J Walter L Miles B Marel E Baré J Solomon M McMahon S Shimmin A
Full Access

Introduction

The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures.

Methodology

Pre-operatively, 90 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair), Fig 1. Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography, Fig 2.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 160 - 165
1 Feb 2013
McDonnell SM Boyce G Baré J Young D Shimmin AJ

Noise generation has been reported with ceramic-on-ceramic articulations in total hip replacement (THR). This study evaluated 208 consecutive Delta Motion THRs at a mean follow-up of 21 months (12 to 35). There were 141 women and 67 men with a mean age of 59 years (22 to 84). Patients were reviewed clinically and radiologically, and the incidence of noise was determined using a newly described assessment method. Noise production was examined against range of movement, ligamentous laxity, patient-reported outcome scores, activity level and orientation of the acetabular component. There were 143 silent hips (69%), 22 (11%) with noises other than squeaking, 17 (8%) with unreproducible squeaking and 26 (13%) with reproducible squeaking. Hips with reproducible squeaking had a greater mean range of movement (p < 0.001) and mean ligament laxity (p = 0.004), smaller median head size (p = 0.01) and decreased mean acetabular component inclination (p = 0.02) and anteversion angle (p = 0.02) compared with the other groups. There was no relationship between squeaking and age (p = 0.13), height (p = 0.263), weight (p = 0.333), body mass index (p = 0.643), gender (p = 0.07) or patient outcome score (p = 0.422). There were no revisions during follow-up. Despite the surprisingly high incidence of squeaking, all patients remain satisfied with their hip replacement.

Cite this article: Bone Joint J 2013;95-B:160–5.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 156 - 156
1 Mar 2008
Baré J Dixon S Beard D Gill H McEachen G Murray D
Full Access

The long-term survival of total knee arthroplasty (TKA) has been well established; however, functional outcome remains inconsistent. More normal postoperative TKA kinematics have been shown to produce better knee function. Improved kinematics can be obtained by using implants with optimised surface geometry. Hence a TKA with an appropriate surface geometryis likely to provide superior long-term functional outcome. The Advance-Medial Pivot TKA (Wright Medical) is a fixed bearing prosthesis with a conforming medial compartment and a non-conforming (flat on flat) lateral compartment. This surface geometry is designed with the intention of replicating the normal knee motion of sliding or pivoting medially and rolling back laterally.

Aim: To investigate the sagittal plane kinematics of Advanced Medial Pivot Knee and compare with those of “flat on flat” fixed bearing TKA and normal knees

18 patients who had undergone primary TKA for osteoarthritis were recruited at an average of 18 months post operation. These patients performed flexion and extension exercises against gravity and a step up exercise. Video fluoroscopy of these activities was used to obtain the patellar tendon angle (PTA). This is a previously validated method for assessing sagittal plane kinematics of a knee joint. The kinematic profile of the Advance Medial Pivot Knee was compared to the profile of 14 normal knees and 30 flat on flat, fixed bearing TKA’s.

The sagittal plane kinematics of the Advance TKA differed from the normal knees. However, similarly to normal knees, a linear relationship was observed between PTA and knee flexion angle throughout knee flexion range. The kinematics of the Medial Pivot Knee were similar to normal when the knee was in a highly flexed position.

Functional plane kinematics of the Advance Medial Pivot TKA appear to meet the design criteria in that a linear relationship between PTA and flexion angle is maintained. Further work is required to establish if these improved sagittal plane kinematics translate into improved functional outcome.