header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 12, Issue 10 | Pages 657 - 666
17 Oct 2023
Sung J Barratt KR Pederson SM Chenu C Reichert I Atkins GJ Anderson PH Smitham PJ

Aims

Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy.

Methods

Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 96 - 96
1 Nov 2018
Atkins GJ
Full Access

Periprosthetic joint infections (PJI) are increasing in prevalence and are recognised as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat, difficult to cure and increases patient mortality 5-fold. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Staphylococcus aureus is the most common pathogen causing PJI. Osteocytes are the most numerous and long-lived cell type in hard bone tissue. Our recent work has shown that S. aureus can infect and reside in human osteocytes without causing cell death, both experimentally and in bone samples from patients with PJI. Osteocytes respond to infection by the differential regulation of a large number of genes, suggesting previously unknown immune functions of this important cell type. S. aureus adapts during intracellular infection of osteocytes by adopting a quasi-dormant, small colony variant (SCV) phenotype, a property of several bacterial species known to cause PJI, which could contribute to persistent or silent infection. These findings shed new light on the aetiology of PJI and osteomyelitis in general. Further elucidation of the role of osteocytes in bone infection will hopefully lead to improved disease detection and management.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 902 - 911
1 Aug 2001
Haynes DR Crotti TN Potter AE Loric M Atkins GJ Howie DW Findlay DM

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss.

Cells isolated from periprosthetic tissues containing wear particles expressed mRNA encoding for the pro-osteoclastogenic molecules, RANKL, its receptor RANK, monocyte colony-stimulating factor (M-CSF), interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6, and soluble IL-6 receptor, as well as OPG. Osteoclasts formed from cells isolated from periprosthetic tissues in the presence and absence of human osteoblastic cells. When osteoclasts formed in the absence of osteoblastic cells, markedly higher levels of RANKL mRNA relative to OPG mRNA were expressed. Particles of prosthetic materials also stimulated human monocytes to express osteoclastogenic molecules in vitro.

Our results suggest that ingestion of prosthetic wear particles by macrophages results in expression of osteoclast-differentiating molecules and the stimulation of macrophage differentiation into osteoclasts.