header advert
Results 1 - 4 of 4
Results per page:
Bone & Joint Open
Vol. 2, Issue 7 | Pages 552 - 561
28 Jul 2021
Werthel J Boux de Casson F Burdin V Athwal GS Favard L Chaoui J Walch G

Aims

The aim of this study was to describe a quantitative 3D CT method to measure rotator cuff muscle volume, atrophy, and balance in healthy controls and in three pathological shoulder cohorts.

Methods

In all, 102 CT scans were included in the analysis: 46 healthy, 21 cuff tear arthropathy (CTA), 18 irreparable rotator cuff tear (IRCT), and 17 primary osteoarthritis (OA). The four rotator cuff muscles were manually segmented and their volume, including intramuscular fat, was calculated. The normalized volume (NV) of each muscle was calculated by dividing muscle volume to the patient’s scapular bone volume. Muscle volume and percentage of muscle atrophy were compared between muscles and between cohorts.


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1074 - 1079
1 Aug 2018
Paul R Knowles N Chaoui J Gauci M Ferreira L Walch G Athwal GS

Aims

The Walch Type C dysplastic glenoid is characterized by excessive retroversion. This anatomical study describes its morphology.

Patients and Methods

A total of 29 shoulders with a dysplastic glenoid were analyzed. CT was used to measure retroversion, inclination, height, width, radius-of-curvature, surface area, depth, subluxation of the humeral head and the Goutallier classification of fatty infiltration. The severity of dysplasia and deficiency of the posterior rim of the glenoid were recorded.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 224 - 228
1 Feb 2014
Simone JP Streubel PH Athwal GS Sperling JW Schleck CD Cofield RH

We assessed the clinical results, radiographic outcomes and complications of patients undergoing total shoulder replacement (TSR) for osteoarthritis with concurrent repair of a full-thickness rotator cuff tear. Between 1996 and 2010, 45 of 932 patients (4.8%) undergoing TSR for osteoarthritis underwent rotator cuff repair. The final study group comprised 33 patients with a mean follow-up of 4.7 years (3 months to 13 years). Tears were classified into small (10), medium (14), large (9) or massive (0). On a scale of 1 to 5, pain decreased from a mean of 4.7 to 1.7 (p = < 0.0001), the mean forward elevation improved from 99° to 139° (p = < 0.0001), and the mean external rotation improved from 20° (0° to 75°) to 49° (20° to 80°) (p = < 0.0001). The improvement in elevation was greater in those with a small tear (p = 0.03). Radiographic evidence of instability developed in six patients with medium or large tears, indicating lack of rotator cuff healing. In all, six glenoid components, including one with instability, were radiologically at risk of loosening. Complications were noted in five patients, all with medium or large tears; four of these had symptomatic instability and one sustained a late peri-prosthetic fracture. Four patients (12%) required further surgery, three with instability and one with a peri-prosthetic humeral fracture.

Consideration should be given to performing rotator cuff repair for stable shoulders during anatomical TSR, but reverse replacement should be considered for older, less active patients with larger tears.

Cite this article: Bone Joint J 2014;96-B:224–8.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1383 - 1387
1 Oct 2013
Lanting BA Ferreira LM Johnson JA Athwal GS King GJW

We measured the tension in the interosseous membrane in six cadaveric forearms using an in vitro forearm testing system with the native radial head, after excision of the radial head and after metallic radial head replacement. The tension almost doubled after excision of the radial head during simulated rotation of the forearm (p = 0.007). There was no significant difference in tension in the interosseous membrane between the native and radial head replacement states (p = 0.09). Maximal tension occurred in neutral rotation with both the native and the replaced radial head, but in pronation if the radial head was excised. Under an increasing axial load and with the forearm in a fixed position, the rate of increase in tension in the interosseous membrane was greater when the radial head was excised than for the native radial head or replacement states (p = 0.02). As there was no difference in tension between the native and radial head replacement states, a radial head replacement should provide a normal healing environment for the interosseous membrane after injury or following its reconstruction. Load sharing between the radius and ulna becomes normal after radial head Replacement. As excision of the radial head significantly increased the tension in the interosseous membrane it may potentially lead to its attritional failure over time.

Cite this article: Bone Joint J 2013;95-B:1383–7.